Митохондриальный синдром у ребенка. Митохондриальные заболевания: причины, симптомы, диагностика Болезни протекающие с кальцинозом митохондрий

Митохондриальный синдром у ребенка. Митохондриальные заболевания: причины, симптомы, диагностика Болезни протекающие с кальцинозом митохондрий

пост обновлен 28.02.2019

Введение (особенности митохондрий человека) . Особенностью функционирования митохондрий является наличие собственного митохондриального генома - кольцевой митохондриальной ДНК (мтДНК), содержащей 37 генов, продукты которых участвуют в процессе выработки энергии в дыхательной цепи митохондрий. мтДНК располагается во внутренней мембране митохондрий и состоит из пяти сопряженно функционирующих ферментных комплексов, которые в целом насчитывают 86 субъединиц. В основном они кодируются ядерными генами (яДНК), но семь субъединиц первого ферментного комплекса (ND1, 2, 3, 4, 4L, 5, 6), один - третьего (цитохром b), три - четвертого (COI, COII, COIII) и две - пятого (АТФазы 6 и 8) кодируются структурными генами мтДНК. Таким образом, в обеспечении многообразных биохимических функций митохондрий участвуют ферментные комплексы (т.е. белки), кодируемые как ядерными (яДНК), так и митохондриальными генами (мтДНК).

Обратите внимание ! Основными биохимическими процессами, которые имеют отношение к энергетическому обмену и происходят в митохондриях, являются: цикл трикарбоновых кислот (цикл Кребса), бета-окисление жирных кислот, карнитиновый цикл, транспорт электронов в дыхательной цепи и окислительное фосфорилирование. Любой из указанных процессов может нарушаться и быть причиной митохондриальной недостаточности.

Причина возникновения митохондриальных болезней (далее МБ). Главные свойства митохондриального генома - это цитоплазматическое наследование генов, отсутствие рекомбинаций (т.е. реорганизации генетического материала посредством обмена отдельными сегментами, участками, двойных спиралей ДНК) и высокая скорость мутирования. Митохондриальный геном отличается выраженной нестабильностью и высокой скоростью нуклеотидных замен, в среднем в 10 - 17 раз выше скорости мутирования ядерных генов, и в течение жизни индивида в нем нередко возникают соматические мутации. Непосредственная причина возникновения и развития дисфункции митохондрий кроется в дефектах системы окислительного фосфорилирования, несовершенстве репарационных механизмов, отсутствии гистонов и присутствии свободных радикалов кислорода – побочных продуктов аэробного дыхания.

Для мутаций митохондриального генома характерно явление [!!! ] гетероплазмии, при котором (благодаря специфичности митохондриального наследования) в результате клеточного деления распределение (варьирующее в широких пределах - от 1 до 99%) мутантных мтДНК между дочерними клетками происходит случайно и неравномерно, вследствие чего в дочерних клетках одновременно присутствуют копии мтДНК, несущие нормальный и/или мутантный аллель. При этом различные ткани организма или соседние участки одной и той же ткани могут различаться по степени гетероплазмии, т.е. по степени присутствия и соотношения в клетках организма митохондрий как с мутантной, так и с нормальной мтДНК (в последующих поколениях часть клеток может обладать только нормальной мтДНК, другая часть только мутантной, а третья часть - и тем и другим типом мтДНК). Содержание митохондрий с мутантной мтДНК нарастает постепенно. Благодаря этому «лаг периоду» (от англ. «lag» - запаздывание), будущие пациенты нередко достигают половозрелого возраста (и дают потомство, почти всегда несущее те же мутации в мтДНК). Когда количество мутантных копий мтДНК достигает в клетке определенного порога концентрации, энергетический метаболизм в клетках оказывается значительно нарушенным и проявляется в виде заболевания (обратите внимание: особенностью наследственных МБ зачастую является полное отсутствие каких-либо патологических признаков в начале жизни больного).

Обратите внимание ! Гетероплазмия характеризуется одновременным существованием мутантных и нормальных мтДНК в одной клетке, ткани, органе, что определяет тяжесть, характер и возраст манифестации МБ. Количество измененных мтДНК также может увеличиваться с возрастом под влиянием различных факторов и постепенно достигать уровня, способного вызвать клиническое проявления заболевания.

В соответствии с вышеупомянутыми особенностями двойного генома митохондрий тип наследования МБ может быть различным. Поскольку мтДНК в организме имеет почти исключительно материнское происхождение, при передаче митохондриальной мутации потомству в родословной имеет место материнский тип наследования - болеют все дети больной матери. Если мутация происходит в ядерном гене (яДНК), кодирующем синтез митохондриального белка, заболевание передается по классическим менделевским законам. Иногда мутация мтДНК (обычно - делеция) возникает de novo на ранней стадии онтогенеза, и тогда заболевание проявляется как спорадический случай.

Обратите внимание ! В настоящее время известно более 100 точечных мутаций и несколько сотен структурных перестроек мтДНК, ассоциированных с характерными нейромышечными и другими митохондриальными синдромами - от летальных в неонатальном периоде жизни до заболеваний с поздним началом.

Дефиниция . МБ могут быть охарактеризованы как заболевания, обусловленные генетическими и структурно-биохимическими дефектами митохондрий и сопровождающиеся нарушением тканевого дыхания и, как следствие, системным дефектом энергетического метаболизма, вследствие чего поражаются в различной комбинации наиболее энергозависимые ткани и органы-мишени: мозг, скелетные мышцы и миокард (митохондриальные энцефаломиопатии), поджелудочная железа, орган зрения, почки, печень. Клинически нарушения в указанных органах могут реализоваться в любом возрасте. При этом гетерогенность симптоматики затрудняет клиническую диагностику этих заболеваний. Необходимость исключения МБ возникает при наличии мультисистемных проявлений, которые не укладываются в обычный патологический процесс. Частоту дисфункции дыхательной цепи оценивают от 1 на 5 - 10 тыс. до 4 - 5 на 100 тыс. новорожденных.

Семиотика . Нервно-мышечная патология при МБ обычно бывает представлена деменцией, судорогами, атаксией, оптической нейропатией, ретинопатией, нейросенсорнуой глухотой, периферической нейропатией, миопатией. Однако около 1/3 пациентов с МБ имеют нормальный интеллект, а нервно-мышечные проявления у них отсутствуют. К МБ относят, в частности, энцефалокардиомиопатию Kearns - Sayre (пигментный ретинит, наружная офтальмоплегия, полная блокада сердца); синдром MERRF (миоклонус-эпилепсия, «рваные» красные волокна); (митохондриальная энцефало-миопатия, лактат-ацидоз, инсультоподобные эпизоды); синдром Pearson (энцефаломиопатия, атаксия, деменция, прогрессирующая наружная офтальмоплегия); синдром NAPR (невропатия, атаксия, пигментный ретинит); и некоторые формы офтальмопатической миопатии. Все эти формы объединены выраженным в той или иной степени миопатическим синдромом.

Обратите внимание ! Двумя основными клиническими признаками МБ являются увеличение с течением времени числа вовлеченных в патологический процесс органов и тканей, а также практически неизбежное поражение центральной нервной системы. Полиморфизм клинических проявлений, включая поражение органов, на первый взгляд физиологически и морфологически не связанных, в сочетании с различными сроками манифестации и неуклонным прогрессированием симптоматики заболевания с возрастом и позволяет заподозрить [генетическую] мутацию мтДНК.

Обратите внимание ! В клинической практике большое значение имеет умение дифференцировать клиническую картину МБ от более распространенных соматических, аутоиммунных, эндокринных и других патологических состояний, большинство из которых поддаются лечению. Необходимо проводить тщательную оценку семейного анамнеза, данных рутинных клинических и лабораторно-инструментальных методов обследования, прежде чем назначать пациенту специфические генетические и биохимические тесты, направленные на поиск митохондриальной патологии.

Диагностика . Алгоритм диагностики любой МБ должен включать следующие этапы: [1 ] выявление типичной клинической картины митохондриального синдрома либо «необъяснимой» мультисистемности поражения и наследственного анамнеза, подтверждающего материнский тип наследования; [2 ] дальнейший диагностический поиск должен быть направлен на обнаружение общих маркеров митохондриальной дисфункции: повышение уровня лактата/пирувата в сыворотке крови и цереброспинальной жидкости, нарушение углеводного, белкового, аминокислотного обменов, а также клинической картины с вовлечением в патологический процесс как минимум трех из указанных систем: ЦНС, сердечно-сосудистой системы, мышечной, эндокринной, почечной, органов зрения и слуха; [3 ] при клинических и подтвержденных лабораторно-инструментальных признаках митохондриальной патологии проводят ПЦР-анализ лимфоцитов крови для прицельного поиска точковых мутаций мтДНК; исследование, которое считается золотым стандартом диагностики МБ [цитопатий], - биопсия скелетных мышц с проведением гистохимического, электронно-микроскопического, иммунологического и молекулярно-генетического анализов, характерные изменения в которых будут при любой МБ (см. далее); [5 ] наиболее чувствительными тестами для диагностики МБ служат методы оценки уровня гетероплазмии патологических мтДНК в различных органах и тканях: флуоресцентная ПЦР, клонирование, денатурирующая высокоразрешающая жидкостная хроматография, секвенирование, саузерн-блот-гибридизация и т.д.

Гистохимическое исследование биоптатов мышц пациентов, включающее окраску трихромом по методу Гомори, демонстрирует изменения, характерные для МБ, - рваные красные волокна миофибриллы, которые содержат большое количество пролиферирующих и поврежденных митохондрий, образующих агломераты по периферии мышечного волокна. При этом количество рваных красных волокон в биопсии должно быть ≥ 2%. Ферменто-гистохимический анализ показывает дефицит цитохром-С-оксидазы в 2 и 5% миофибрилл (для пациентов моложе 50 и старше 50 лет) их общего числа в биоптатах. Гистохимический анализ сукцинатдегидрогеназной (СДГ) активности демонстрирует CДГ-положительное окрашивание миофибрилл – рваные синие волокна (ragged blue fibers), что в сочетании с СДГ-позитивным окрашиванием стенок артерий, кровоснабжающих мышцы, свидетельствует о высокой степени повреждения митохондрий миоцитов. При проведении электронной микроскопии биоптатов мышц определяют патологические включения, структурные перестройки митохондрий, изменение их формы, размера и числа.

Обратите внимание ! Несмотря на значительный прогресс, достигнутый с момента открытия генетических мутаций мтДНК, большинство из используемых в клинической практике диагностических методов обладают низкой степенью специфичности в отношении отдельных МБ. Поэтому диагностические критерии для той или иной МБ, в первую очередь, складываются из сочетания специфической клинической и морфологической картин.

Принципы лечения . Терапия МБ (цитопатий) носит исключительно симптоматический характер и направлена на снижение скорости прогрессирования заболевания, а также улучшение качества жизни пациентов. С этой целью больным назначают стандартную комбинацию препаратов, включающую коэнзим Q10, идебенон - синтетический аналог СоQ10, креатин, фолиевую кислоту, витамины В2, В6, В12 и другие лекарственные средства, улучшающие окислительно-восстановительные реакции в клетках (препараты-переносчики электронов в дыхательной цепи и кофакторы энзимных реакций энергетического обмена). Эти соединения стимулируют синтез молекул АТФ и снижают активность свободно-радикальных процессов в митохондриях. Между тем, по данным систематического обзора, большинство из препаратов, обладающих антиоксидантным и метаболическим действием и применяемых при МБ, не оценивали в масштабных рандомизированных плацебо-контролируемых исследованиях. Поэтому сложно оценить выраженность их терапевтического эффекта и наличие значительных побочных эффектов.

Подробнее о МБ в следующих источниках :

статья «Нервно-мышечная патология при митохондриальных болезнях» Л.А. Сайкова, В.Г. Пустозеров; Санкт Петербургская медицинская академия последипломного образования Росздрава (журнал «Вестник Санкт-Петербургской медицинской академии последипломного образования» 2009) [читать ];

статья «Хроническиe заболевания невоспалительного генезa и мутации митохондриального генома человека» К.Ю. Митрофанов, А.В. Желанкин, М.А. Сазонова, И.А. Собенин, А.Ю. Постнов; Инновационный центр Сколково. Научно-исследовательский институт атеросклероза, Москва; ГБОУ Научно-исследовательский институт общей патологии и патофизиологии РАМН, Москва; Институт клинической кардиологии им. А.Л.Мясникова ФГБУ РКНПК Минздравсоцразвития РФ (журнал «Кардиологический вестник» №1, 2012) [читать ];

статья «Митохондриальная днк и наследственная патология человека» Н.С. Прохорова, Л.А. Демиденко; Кафедра медицинской биологии, ГУ «Крымский государственный медицинскый университет им. С.И. Георгиевского», г. Симферополь (журнал «Таврический медико-биологический вестник» №4, 2010) [читать ];

статья «Митохондриальный геном и митохондриальные заболевания человека» И.О. Мазунин, Н.В. Володько, Е.Б. Стариковская, Р.И. Сукерник; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск (журнал «Молекулярная биология» №5, 2010) [читать ];

статья «Перспективы митохондриальной медицины» Д.Б. Зоров, Н.К. Исаев, Е.Ю. Плотников, Д.Н. Силачев, Л.Д. Зорова, И.Б. Певзнер, М.А. Моросанова, С.С. Янкаускас, С.Д. Зоров, В.А. Бабенко; Московский государственный университет им. М.В. Ломоносова, Институт физико-химической биологии им. А.Н. Белозерского, НИИ Митоинженерии, Лазерный Научный Центр, факультет биоинженерии и биоинформатики; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова (журнал «Биохимия» №9, 2013) [читать ];

статья «Инсульты при митохондриальных заболеваниях» Н.В. Пизова; Кафедра нервных болезней с курсами нейрохирургии и медицинской генетики ГБОУ ВПО «Ярославская государственная медицинская академия» (журнал «Неврология, нейропсихиатрия, психосоматика» №2, 2012) [читать ];

статья «Диагностика и профилактика ядерно-кодируемых митохондриальных заболеваний у детей» Е.А. Николаева; Научно-исследовательский клинический институт педиатрии, Москва (журнал «Российский вестник перинатологии и педиатрии» №2, 2014) [читать ];

статья «Эпилепсия у детей с митохондриальными заболеваниями: особенности диагностики и лечения» Заваденко Н.Н., Холин А.А.; ГБОУ ВПО Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Минздравсоцразвития России, Москва (журнал «Эпилепсия и пароксизмальные состояния» №2, 2012) [читать ];

статья «Митохондриальная патология и проблемы патогенеза психических нарушений» В.С. Сухоруков; Московский НИИ педиатрии и детской хирургии Росмедтехнологий (Журнал неврологии и психиатрии, №6, 2008) [читать ];

статья «Алгоритм диагностики митохондриальных энцефаломиопатий» С.Н. Иллариошкин (журнал «Нервные болезни» №3, 2007) [читать ];

статья «Актуальные вопросы лечения митохондриальных нарушений» В.С. Сухоруков; ФГБУ «Московский НИИ педиатрии и детской хирургии» Минздрава России (журнал «Эффективная фармакотерапия. Педиатрия» №4, 2012 [читать ];

статья «Лейкоэнцефалопатия с преимущественным поражением ствола мозга, спинного мозга и повышенным лактатом при МР-спектроскопии (клиническое наблюдение)» В.И. Гузева, Е. А. Ефет, О. М. Николаева; Санкт-Петербургский педиатрический медицинский университет, Санкт-Петербург, Россия (журнал «Нейрохирургия и неврология детского возраста» №1, 2013) [читать ];

учебно-методическое пособие для студентов третьего курса медико-диагностического факультета медицинских вузов «Наследственные митохондриальные заболевания» Т.С. Угольник, И. В. Манаенкова; Учреждение образования «Гомельский государственный медицинский университет», кафедра патологической физиологии, 2012 [читать ];

пост: Митохондриальне заболевания (нейродегенерация) - на сайт c 17-ю ссылками на источники (статьи, презентации и т.д.) .


© Laesus De Liro

Митохондриальные болезни — это группа наследственной патологии, возникающей в результате нарушений клеточной энергетики, характеризующаяся полиморфизмом клинических проявлений, выражающаяся в преимущественном поражении центральной нервной системы и мышечной системы, а также других органов и систем организма .

Альтернативное определение митохондриальной патологии гласит, что это обширная группа патологических состояний, обусловленных генетическими, структурными и биохимическими дефектами митохондрий, нарушением тканевого дыхания и, как следствие, недостаточностью энергетического обмена.

Как указывает A. Munnich, «митохондриальные заболевания могут вызывать любой симптом, в любой ткани, в любом возрасте, при любом типе наследования» .

Митохондриальные дыхательные цепи — главный конечный путь аэробного метаболизма. Поэтому митохондриальную патологию нередко называют «болезнями дыхательной цепи митохондрий» (БДЦМ); это сравнительно новый класс болезней.

Исторические аспекты митохондриальной патологии

R. Luft и соавт. (1962) обнаружили взаимосвязь между мышечной слабостью и нарушениями процессов окислительного фосфорилирования в мышечной ткани . S. Nass и M. Nass (1963) открыли существование собственного генетического аппарата митохондрий (обнаружены несколько копий кольцевой хромосомы) . В 1960-1970 гг. появилась концепция митохондриальных болезней, то есть патологии, этиологически опосредованной митохондриальной дисфункцией. В 1980-е гг. были получены точные молекулярно-генетические доказательства митохондриальной природы ряда заболеваний (болезнь Лебера, синдром Пирсона) .

Этиопатогенетические аспекты митохондриальной патологии

В зависимости от наличия основного метаболического дефекта принято рассматривать четыре основных группы митохондриальных болезней: 1) нарушения обмена пирувата; 2) дефекты обмена жирных кислот; 3) нарушения цикла Кребса; 4) дефекты электронного транспорта и окислительного фосфорилирования (OXPHOS) .

Причинами возникновения митохондриальной патологии являются мутации в генах, кодирующих белки, задействованные в процессах энергообмена в клетках (включая субъединицы комплекса пируватдегидрогеназы, ферменты цикла Кребса, компоненты цепи транспорта электронов, структурные белки цепи транспорта электронов (ЦТЭ), митохондриальные транспортеры внутренней мембраны, регуляторы митохондриального нуклеотидного пула, а также факторы, взаимодействующие с ДНК митохондрий (мтДНК) .

Митохондриальные нарушения связаны с большим числом болезней, не являющихся первичными митохондриальными цитопатиями. Тем не менее, при этих болезнях нарушения функций митохондрий вносят значимый вклад в патогенез и клинические проявления заболеваний. Описываемые болезни могут быть метаболическими, дегенеративными, воспалительными, врожденными/приобретенными мальформациями, а также неоплазмами.

Митохондрия является органеллой, которая присутствует практически в каждой клетке, за исключением зрелых эритроцитов. Именно поэтому митохондриальные болезни могут поражать любые системы и органы человеческого организма . В связи с этим правильнее называть эти состояния «митохондриальными цитопатиями» .

Основные особенности митохондриальных цитопатий включают выраженный полиморфизм клинических симптомов, мультисистемный характер поражения, вариабельность течения, прогрессирование и неадекватное реагирование на применяемую терапию.

Дыхательная цепь локализуется на внутренней мембране митохондрий и включает в себя пять мультиферментных комплексов, каждый из которых, в свою очередь, состоит из нескольких десятков субъединиц. Митохондриальная ДНК кодирует только 13 из белковых субъединиц дыхательной цепи, 2 белковых субъединицы мтРНК и 22 митохондриальных транспортных РНК (тРНК). Ядерный геном кодирует более 90% митохондриальных белков .

Конечным результатом окислительного фосфорилирования, происходящего в комплексах 1-γ, является производство энергии (АТФ). Аденозин трифосфат — основной источник энергии для клеток.

Митохондриальная ДНК тесно взаимодействует с ядерной ДНК (яДНК). В каждом из 5 дыхательных комплексов основная часть субъединиц кодируется яДНК, а не мтДНК. Комплекс I состоит из 41 субъединицы, из которых 7 кодируются мтДНК, а остальные — яДНК. Комплекс II имеет всего 4 субъединицы; большая их часть кодируется яДНК. Комплекс III представлен десятью субъединицами; кодирование мтДНК — 1, яДНК — 9. Комплекс IV имеет 13 субъединиц, из которых 3 кодируются мтДНК, а 10 — яДНК. Комплекс V включает 12 субъединиц, кодирование мтДНК — 2, яДНК — 10 .

Нарушения клеточной энергетики приводят к полисистемным заболеваниям. В первую очередь, страдают органы и ткани, являющиеся наиболее энергозависимыми: нервная система (энцефалопатии, полинейропатии), мышечная система (миопатии), сердце (кардиомиопатии), почки, печень, эндокринная система и другие органы и системы. До недавнего времени все эти заболевания определялись под многочисленными масками других нозологических форм патологии. К настоящему времени выявлено более 200 заболеваний, причиной которых являются мутации митохондриальной ДНК .

Митохондриальные болезни могут быть обусловлены патологией как митохондриального, так и ядерного генома. Как указывают P. F. Chinnery и соавт. (2004) и S. DiMauro (2004), мутации мтДНК были выявлены в 1 случае на 8000 населения, а распространенность митохондриальных заболеваний составляет порядка 11,5 случаев на 100 тысяч населения .

В каждой клетке находятся от нескольких сотен до нескольких тысяч органелл — митохондрий, содержащих от 2 до 10 кольцевых молекул митохондриальной ДНК, способных к репликации, транскрипции и трансляции, причем независимо от ядерной ДНК.

Генетические аспекты митохондриальной патологии

Митохондриальная генетика отличается от классической менделевской в трех важнейших аспектах: 1) материнское наследование (всю цитоплазму, вместе с находящимися в ней органеллами, потомки получают вместе с яйцеклеткой); 2) гетероплазмия — одновременное существование в клетке нормального (дикого) и мутантного типов ДНК; 3) митотическая сегрегация (оба типа мтДНК в процессе деления клетки могут распределяться случайным образом между дочерними клетками) .

Митохондриальная ДНК накапливает мутации более чем в 10 раз быстрее ядерного генома, так как она лишена защитных гистонов и ее окружение чрезвычайно богато реактивными видами кислорода, являющимися побочным продуктом метаболических процессов, протекающих в митохондриях. Пропорция мутантной мтДНК должна превышать критический пороговый уровень, прежде чем клетки начнут проявлять биохимические аномалии митохондриальных дыхательных цепей (пороговый эффект). Процентный уровень мутантной мтДНК может варьировать у индивидов внутри семей, а также в органах и тканях. В этом заключается одно из объяснений вариабельности клинической картины у больных с митохондриальными дисфункциями. Одни и те же мутации могут вызывать различные клинические синдромы (например, мутация A3243G — энцефалопатию с инсультоподобными пароксизмами — синдром MELAS, а также хроническую прогрессирующую наружную офтальмоплегию, сахарный диабет). Мутации в различных генах могут быть причиной одного и того же синдрома. Классическим примером такой ситуации является синдром MELAS .

Разновидности митохондриальной патологии

Если перечислить основные митохондриальные болезни, то в их числе окажутся следующие: митохондриальная нейрогастроинтестинальная энцефалопатия (MNGIE), синдром множественных делеций митохондриальной ДНК, липидная миопатия с нормальными уровнями карнитина, недостаточность карнитин пальмитоилтрансферазы, митохондриальный сахарный диабет, болезнь Альперса-Хуттенлохера, синдром Кернса-Сейра, болезнь Лебера (LHON), синдром Вольфрама, синдром MEMSA, синдром Пирсона, синдром SANDO, синдром MIRAS, синдром MELAS, синдром MERRF, синдром SCAE, синдром NARP, синдром Барта, синдром CPEO, синдром Ли и др. .

Наиболее часто в детском возрасте встречаются следующие клинические синдромы митохондриальной патологии: синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз и инсультоподобные пароксизмы), синдром MERRF (миоклонус-эпилепсия с рваными красными волокнами), синдром Кернса-Сейра (характеризуется птозом, офтальмоплегией, пигментным ретинитом, атаксией, нарушением сердечного проведения), синдром NARP (нейропатия, атаксия, пигментный ретинит), синдром Ли (подострая некротизирующая энцефаломиелопатия), болезнь Лебера (наследственная оптическая нейропатия) .

Имеется большой пул заболеваний, причиной которых является не мутации митохондриальной ДНК, а мутации ядерной ДНК, кодирующей работу митохондрий. К ним относятся следующие виды патологии: болезнь Барта (миопатия, кардиомиопатия, транзиторные нейтро- и тромбоцитопении), митохондриальная гастроинтестинальная энцефалопатия (аутосомно-рецессивное мультисистемное заболевание): птоз, офтальмоплегия, периферическая нейропатия, гастроинтестинальная дисфункция, приводящая к кахексии, лейкоэнцефалопатия. Возраст дебюта последнего заболевания весьма вариабелен — от периода новорожденности до 43 лет.

Диагностика митохондриальной патологии

Клинические критерии диагностики митохондриальных болезней сравнительно многочисленны: 1) миопатический симптомокомплекс (непереносимость физических нагрузок, мышечная слабость, снижение мышечного тонуса); 2) судороги (миоклонические или мультифокальные); 3) мозжечковый синдром (атаксия, интенционный тремор); 4) поражение глазо-двигательных нервов (птоз, наружная офтальмоплегия); 5) полинейропатия; 6) инсультоподобные пароксизмы; 7) мигренеподобные головные боли; 8) черепно-лицевая дисморфия; 9) дисметаболические проявления (рвота, эпизоды летаргии, комы); 10) дыхательные нарушения (апноэ, гипервентиляция, тахипноэ); 11) поражение сердца, печени, почек; 12) прогрессирующее течение заболевания .

В диагностике митохондриальных болезней используются следующие клинические критерии: 1) признаки поражения соединительной ткани (гипермобильный синдром, гиперэластичность кожи, нарушения осанки и др.); 2) нейродегенеративные проявления, лейкопатии при проведении магнитно-резонансной томографии (МРТ) головного мозга; 3) повторные эпизоды нарушения сознания или необъяснимые эпизоды рвоты у новорожденных; 4) необъяснимая атаксия; 5) отставание в умственном развитии без определенных причин; 6) отягощенный семейный анамнез; 7) внезапное ухудшение состояния ребенка (судороги, рвота, расстройства дыхания, вялость, слабость, нарушения мышечного тонуса — чаще мышечная гипотония, кома, летаргия; поражение печени и почек, не поддающееся обычной терапии) .

Лабораторные (биохимические) исследования нацелены в первую очередь на выявление у пациентов лактат-ацидоза и/или пируват-ацидоза. При этом следует помнить, что нормальные показатели молочной кислоты не исключают наличия митохондриального заболевания. Другие биохимические показатели, исследуемые при подозрении на наличие митохондриальной патологии, включают кетоновые тела в крови и моче, ацилкарнитины плазмы крови, а также содержание органических кислот и аминокислот в крови и моче .

M. V. Miles и соавт. (2008) предложили оценивать содержание мышечного коэнзима Q10 у детей с дефектом ферментов дыхательной цепи митохондрий .

Цитоморфоденситометрические исследования позволяют оценивать активность митохондрий лимфоцитов (снижение количества, увеличение объема, снижение активности).

Из инструментальных исследований (помимо методов нейровизуализации) используется биопсия скелетных мышц с проведением специфических гистохимических реакций — для выявления феномена «рваных красных волокон» (ragged red fibers — RRF) в полученном биоптате. Синдромами с «рваными красными волокнами» являются следующие: MELAS, MERRF, KSS, PEO (прогрессирующая наружная офтальмоплегия), а также синдром Пирсона. Синдромы без RRF: болезнь Leigh, NARP, LHON (наследственная оптическая нейропатия Лебера) .

Генетические методы исследований сводятся к определению наиболее частых мутаций и секвенированию митохондриальной ДНК.

Лечение митохондриальной патологии

Терапия митохондриальных болезней, к сожалению, не разработана. С позиций доказательной медицины считается, что эффективное лечение для этой представительной группы болезней отсутствует. Тем не менее, в различных странах мира используются фармакологические средства и биологически активные вещества, нацеленные на нормализацию метаболизма и обеспечение адекватной энергетики митохондрий.

При синдроме MELAS лечение должно быть направлено на лечение судорог, эндокринных расстройств, устранение последствий инсульта.

P. Каufmann и соавт. (2006) указывают, что поскольку уровень лактата часто коррелирует с тяжестью неврологических проявлений, целесообразно применять дихлорацетат для снижения уровня лактата . В нашей стране с аналогичной целью используется диметилоксобутилфосфонилдиметилат (Димефосфон) .

В исследованиях японских авторов Y. Koga и соавт. (2002, 2005, 2006, 2007) с хорошим эффектом использовалось внутривенное введение L-аргинина (предшественника NO) — для стимуляции вазодилатации в остром периоде инсульта, а также пероральное его применение для снижения тяжести последующих эпизодов .

Среди средств, используемых в терапии митохондриальной патологии, фигурируют следующие: витамин В 1 (тиамин) — 400 мг/сут, витамин В 2 (рибофлавин) — 100 мг/сут, витамин С (аскорбиновая кислота) — до 1 г/сут, витамин Е (токоферол) — 400 МЕ/сут, никотинамид (ниацин) — до 500 мг/сут, коэнзим Q 10 — от 90 до 200 мг/сут, L-карнитин — от 10 мг до 1-2 г/сут, янтарная кислота — от 25 мг до 1,5 г/cут, Димефосфон 15% — 1,0 мл на 5 кг массы тела. Применяются также цитохром С (внутривенно), Реамберин (внутривенно) и Цитофлавин (внутривенно и перорально) .

В качестве других средств фармакотерапии выступают кортикостероиды, минералокортикоиды (при развитии надпочечниковой недостаточности), антиконвульсанты — при судорогах/эпилепсии (исключая вальпроевую кислоту и ее производные, ограничивая применение барбитуратов). В наших наблюдениях наиболее эффективной противосудорожной терапией являлось использование препаратов леветирацетам (Кеппра), топирамат (Топамакс) или их сочетаний.

Нейродиетология при митохондриальной патологии

Основным принципом диеты при митохондриальной патологии является ограничение нутриентов, оказывающих негативное влияние на механизмы обмена — до формирования метаболического блока (рацион питания одновременно обогащается другими компонентами на обычном или повышенном уровне). Такая терапевтическая стратегия получила название «обхождения блока» (going around the block). Важным исключением в этом плане является группа митохондриальных нарушений, ассоциированных с метаболизмом пирувата (недостаточность пируватдегидрогеназного комплекса с сопутствующими нарушениями со стороны углеводов/гликогена/аминокислот). При этом рекомендуются кетогенная диета и другие виды высокожировых диет .

Широко применяются вещества, являющиеся пищевыми кофакторами (коэнзим Q 10 , L-карнитин, ацетил-L-карнитин, витамин В 2 , аскорбиновая кислота, витамин Е, витамин В 1 , никотинамид, витамин В 6 , витамин В 12 , биотин, фолиевая кислота, витамин К, α-липоевая кислота, янтарная кислота, Se) . Рекомендуется избегание индивидуальных алиментарных факторов, индуцирующих обострение митохондриальной болезни (голодание, потребление жиров, белков, сахарозы, крахмала, алкоголя, кофеина, мононатрия глутамата; количественные нарушения приема пищи и неадекватное потребление пищевой энергии). При необходимости осуществляется клиническое питание (энтеральное, парентеральное, гастростомия) .

Чрезвычайно важными являются своевременная диагностика митохондриальных болезней, поиск клинических и параклинических критериев этих заболеваний на этапе предварительном, догенетическом. Это необходимо для подбора адекватной метаболической терапии и предотвращения ухудшения состояния или инвалидизации больных с этими редкими заболеваниями.

C. S. Chi (2015) подчеркивает, что подтверждение или исключение митохондриальной патологии остается принципиальным в педиатрической практике, особенно когда клинические признаки болезни не являются специфичными, вследствие чего необходим катамнестический подход к оценке симптомов и биохимических показателей .

Литература

  1. Martikainen M. H., Chinnery P. F. Mitochondrial disease: mimics and chameleons // Pract. Neurol. 2015. Vol. 15 (6): 424-435.
  2. Sarnat H. B., Menkes J. H. Mitochondrial encephalomyopathies. Ch. 2. In: Child Neuroloy (Menkes J. H., Sarnat H. B., Maria B. L., eds). 7 th ed. Philadelphia-Baltimore. Lippincott Williams & Wilkins. 2006. 143-161.
  3. Luft R., Ikkos D., Palmieri G., Ernster L., Afzelius B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study // J. Clin. Invest. 1962. Vol. 41: 1776-1804.
  4. Nass M. M., Nass S. Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions // J. Cell. Biol. 1963. Vol. 19: 593-611.
  5. Nass S., Nass M. M. Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments // J. Cell. Biol. 1963. Vol. 19: 613-629.
  6. Сухоруков В. С. Очерки митохондриальной патологии. М.: Медпрактика-М, 2011. 288 с.
  7. Chinnery P. F., DiMauro S., Shanske S., Schon E. A., Zeviani M., Mariotti C., Carrara F., Lombes A., Laforet P., Ogier H., Jaksch M., Lochmuller H., Horvath R., Deschauer M., Thorburn D. R., Bindoff L. A., Poulton J., Taylor R. W., Matthews J. N., Turnbull D. M. Risk of developing a mitochondrial DNA deletion disorder // Lancet. 2004. 364 (9434): 592-596.
  8. DiMauro S. Mitochondrial diseases // Biochim. Biophys. Acta. 2004. 1658 (1-2): 80-88.
  9. Siciliano G., Volpi L., Piazza S., Ricci G., Mancuso M., Murri L. Functional diagnostics in mitochondrial diseases // Biosci. Rep. 2007. Vol. 27 (1-3): 53-67.
  10. Miles M. V., Miles L., Tang P. H., Horn P. S., Steele P. E., DeGrauw A. J., Wong B. L., Bove K. E. Systematic evaluation of muscle coenzyme Q10 content in children with mitochondrial respiratory chain enzyme deficiencies // Mitochondrion. 2008. Vol. 8 (2): 170-180.
  11. Kaufmann P., Engelstad K., Wei Y., Jhung S., Sano M. C., Shungu D. C., Millar W. S., Hong X., Gooch C. L., Mao X., Pascual J. M., Hirano M., Stacpoole P. W., DiMauro S., De Vivo D. C. Dichloracetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial // Neurology. 2006. Vol. 66 (3): 324-330.
  12. Федеральное руководство по использованию лекарственных средств (формулярная система). Вып. XVI. М.: Эхо, 2015. 540.
  13. Koga Y., Ishibashi M., Ueki I., Yatsuga S., Fukiyama R., Akita Y., Matsuishi T. Effects of L-arginine on the acute phase of strokes in three patients with MELAS // Neurology. 2002. Vol. 58 (5): 827-828.
  14. Koga Y., Akita Y., Nishioka J., Yatsuga S., Povalko N., Tanabe Y., Fujimoto S., Matsuishi T. L-arginine improves the symptoms of strokelike episodes in MELAS // Neurology. 2005. Vol. 64 (4): 710-712.
  15. Koga Y., Akita Y., Junko N., Yatsuga S., Povalko N., Fukiyama R., Ishii M., Matsuishi T. Endothelial dysfunction in MELAS improved by L-arginine supplementation // Neurology. 2006. Vol. 66 (11): 1766-1769.
  16. Koga Y., Akita Y., Nishioka J., Yatsuga S., Povalko N., Katayama K., Matsuishi T. MELAS and L-arginine therapy // Mitochondrion. 2007. Vol. 7 (1-2): 133-139.
  17. Rai P. K., Russell O. M., Lightowlers R. N., Turnbull D. M. Potential compounds for the treatment of mitochondrial disease // Br. Med. Bull. 2015. Nov 20. pii: ldv046. .
  18. Finsterer J., Bindu P. S. Therapeutic strategies for mitochondrial disorders // Pediatr. Neurol. 2015. Vol. 52 (3): 302-313.
  19. Студеникин В. М., Горюнова А. В., Грибакин С. Г., Журкова Н. В., Звонкова Н. Г., Ладодо К. С., Пак Л. А., Рославцева Е. А., Степакина Е. И., Студеникина Н. И., Турсунхужаева С. Ш., Шелковский В. И. Митохондриальные энцефалопатии. Глава 37. В кн.: Нейродиетология детского возраста (коллективная монография)/Под ред. Студеникина В. М. М.: Династия, 2012. С. 415-424.
  20. Chi C. S. Diagnostic approach in infants and children with mitochondrial diseases // Pediatr. Neonatol. 2015. Vol. 56 (1): 7-18.

В. М. Студеникин* , 1 , доктор медицинских наук, профессор, академик РАЕ
О. В. Глоба**, кандидат медицинских наук

* ГОУ ВПО РНИМУ им. Н. И. Пирогова МЗ РФ, Москва
** ГОУ ВПО ПМГМУ им. И. М. Сеченова МЗ РФ, Москва

Митохондриальные заболевания — неоднородная группа наследственных заболеваний, которые вызваны структурными, генетическими или биохимическими дефектами митохондрий, приводящих к нарушениям энергетических функций в клетках эукариотических организмов. У человека при митохондриальных заболеваниях в первую очередь поражается мышечная и нервная система.

МКБ-9 277.87
MeSH D028361
DiseasesDB 28840

Общие сведения

Митохондриальные заболевания как отдельный тип патологий выделены в конце ХХ века после выявления мутации генов, которые ответственны за синтез митохондриальных белков.

Открытые в 1960-х годах мутации митохондриальной ДНК и вызванные этими мутациями болезни более изучены, чем заболевания, вызванные нарушениями ядерно-митохондриальных взаимодействий (мутации ядерной ДНК).

По имеющимся на сегодняшний день данным не менее 50 известных медицине заболеваний связано с митохондриальными нарушениями. Распространенность этих заболеваний составляет 1:5000.

Виды

Митохондрии являются уникальными клеточными структурами, которые обладают собственным ДНК.

Согласно мнению многих исследователей, митохондрии – потомки архебактерий, превратившиеся в эндосимбионтов (микроорганизмы, которые живут в организме «хозяина» и приносят ему пользу). В результате внедрения в эукариотические клетки они постепенно утратили или передали ядру эукариотического хозяина большую часть генома, и это учитывается при классификации. Также принимается во внимание и участие дефектного белка в биохимических реакциях окислительного фосфорилирования, которое позволяет запасать энергию в виде АТФ в митохондриях.

Единой общепринятой классификации не существует.

Обобщенная современная классификация митохондриальных заболеваний выделяет:

  • Заболевания, которые возникают при мутациях митохондриальной ДНК. Дефекты могут быть вызваны точечными мутациями белков, тРНК или рРНК (обычно наследуются по материнской линии), или структурными перестановками – спорадическими (нерегулярными) дупликациями и делециями. Это первичные митохондриальные заболевания, к которым относятся наследственные ярко выраженные синдромы — синдром Кернса — Сейра, синдром Лебера, синдром Пирсона, синдром NAPR, синдром MERRF и др.
  • Заболевания, которые вызваны дефектами ядерной ДНК. Ядерные мутации могут нарушать функции митохондрий – окислительное фосфолирование, работу электронтранспортной цепи, утилизацию или транспорт субстратов. Также мутации ядерной ДНК вызывают дефекты ферментов, которые необходимы для обеспечения циклического биохимического процесса — цикла Кребса, являющегося ключевым этапом дыхания всех использующих кислород клеток и центром пересечения в организме метаболических путей. К данной группе относят гастроинтестинальное митохондриальное заболевание, синдром Люфта, атаксию Фридриха, синдром Альперса, болезни соединительной ткани, диабет и др.
  • Заболевания, которые возникают в результате нарушений в ядерной ДНК и вызванных этими нарушениями вторичных изменений в митохондриальной ДНК. Вторичными дефектами являются тканеспецифические делеции или дупликации митохондриальной ДНК и уменьшение количества копий митохондриальной ДНК или их отсутствие в тканях. В данную группу входят печеночная недостаточность, синдром Де Тони-Дебре-Фанкони и др.

Причины развития

Митохондриальные заболевания вызываются дефектами находящихся в клеточной цитоплазме органелл — митохондрий. Основной функцией этих органелл является выработка энергии из поступающих в цитоплазму продуктов клеточного обмена веществ, которая происходит благодаря участию около 80 ферментов. Выделяющаяся энергия запасается в виде молекул АТФ, а затем преобразуется в механическую или биоэлектрическую энергию и т.д.

Причины митохондриальных заболеваний – нарушение выработки и аккумуляции энергии из-за дефекта одного из ферментов. В первую очередь при хроническом дефиците энергии страдают самые энергозависимые органы и ткани – ЦНС, сердечная мышца и скелетные мышцы, печень, почки и эндокринные железы. Хронический дефицит энергии вызывает патологические изменения в данных органах и провоцирует развитие митохондриальных заболеваний.

Этиология митохондриальных заболеваний имеет свою специфику – большинство мутаций происходит в генах митохондрий, поскольку в этих органеллах интенсивно протекают окислительно-восстановительные процессы и образуются повреждающие ДНК свободные радикалы. У митохондриальной ДНК механизмы восстановления повреждений несовершенны, так как ее не защищают белки-гистоны. В результате дефектные гены накапливаются быстрее в 10-20 раз, чем в ядерной ДНК.

Мутировавшие гены передаются при делении митохондрий, поэтому даже в одной клетке находятся органеллы с разным вариантом генома (гетероплазмия). При мутации митохондриального гена у человека наблюдается смесь мутантной и нормальной ДНК в любом соотношении, поэтому даже при наличии одинаковой мутации митохондриальные заболевания у людей выражены в разной степени. Наличие 10% дефектных митохондрий не оказывает патологического влияния.

Мутация может длительное время не проявляться, так как нормальные митохондрии компенсируют на начальном этапе недостаточность функции дефектных митохондрий. Со временем дефектные органеллы накапливаются, и проявляются патологические признаки заболевания. При раннем манифесте течение болезни более тяжелое, прогноз может быть негативным.

Митохондриальные гены передаются только от матери, так как содержащая эти органеллы цитоплазма присутствует в яйцеклетке и практически отсутствует в сперматозоидах.

Митохондриальные заболевания, которые вызваны дефектами ядерной ДНК, передаются благодаря аутосомно-рецессивному, аутосомно-доминантному или Х-сцепленному типу наследования.

Патогенез

Геном митохондрий отличается от генетического кода ядра и больше напоминает код бактерий. У человека геном митохондрий представлен копиями небольшой кольцевой молекулы ДНК (их число колеблется от 1 до 8). Каждая митохондриальная хромосома кодирует:

  • 13 белков, которые отвечают за синтез АТФ;
  • рРНК и тРНК, которые участвуют в происходящем в митохондриях синтезе белка.

Около 70 генов белков митохондрий кодируются генами ядерной ДНК, благодаря чему осуществляется централизованная регуляция функций митохондрий.

Патогенез митохондриальных заболеваний связан с процессами, которые происходят в митохондриях:

  • С транспортом субстратов (органической кетокислоты пирувата, которая является конечным продуктом метаболизма глюкозы, и жирных кислот). Происходит под воздействием карнитин-пальмитоил-трансферазы и карнитина.
  • С окислением субстратов, которое происходит под влиянием трех ферментов (пируватдегидрогеназы, липоат-ацетилтрансферазы и липоамид-дегидрогеназы). В результате процесса окисления образуется ацетил-КоА, участвующий в цикле Кребса.
  • С циклом трикарбоновых кислот (цикл Кребса), который не только занимает центральное место в энергетическом обмене, но и поставляет промежуточные соединения для синтеза аминокислот, углеводов и других соединений. Половина стадий цикла является окислительными процессами, в результате которых выделяется энергия. Эта энергия аккумулируется в виде восстановленных коферментов (молекул небелковой природы).
  • С окислительным фосфорилированием. В результате полного разложения пирувата в цикле Кребса образуются коферменты NAD и FAD, участвующие в переносе электронов в дыхательную цепь переноса электронов (ЭТЦ). ЭТЦ контролируется митохондриальным и ядерным геномом и осуществляет транспорт электронов при помощи четырех мультиферментных комплексов. Пятый мультиферментный комплекс (АТФ-синтаза) катализирует синтез АТФ.

Патология может возникать как при мутациях генов ядерной ДНК, так и при мутациях генов митохондрий.

Симптомы

Митохондриальные заболевания отличаются значительным разнообразием симптомов, поскольку в патологический процесс вовлекаются разные органы и системы.

Нервная и мышечная системы являются самыми энергозависимыми, поэтому от дефицита энергии они страдают в первую очередь.

К симптомам поражения мышечной системы относятся:

  • снижение или потеря возможности выполнять двигательные функции в связи со слабостью мышц (миопатический синдром);
  • гипотония;
  • боли и болезненные спазмы мышц (крампи).

Митохондриальные заболевания у детей проявляются в головной боли, рвоте и слабости мышц после физической нагрузки.

Поражение нервной системы проявляется в:

  • задержке психомоторного развития;
  • утрате приобретенных ранее навыков;
  • наличии судорог;
  • наличии периодического появления апноэ и ;
  • повторных коматозных состояниях и смещении кислотно-щелочного баланса организма (ацидоз);
  • нарушениях походки.

У подростков наблюдаются головные боли, периферические нейропатии (онемение, утрата чувствительности, паралич и др.), инсультоподобные эпизоды, патологические непроизвольные движения, головокружение.

Для митохондриальных заболеваний также характерны поражения органов чувств, которые проявляются в:

  • атрофии зрительных нервов;
  • птозе и наружной офтальмоплегии;
  • катаракте, помутнении роговицы, пигментной дегенерации сетчатки;
  • дефекте поля зрения, которое наблюдается у подростков;
  • снижении слуха или нейросенсорной глухоте.

Признаками митохондриальных заболеваний являются и поражения внутренних органов:

  • кардиомиопатия и блокады сердца;
  • патологическое увеличение печени, нарушения ее функций, печеночная недостаточность;
  • поражения проксимальных почечных канальцев, сопровождающиеся повышенным выведением глюкозы, аминокислот и фосфатов;
  • приступы рвоты, дисфункция поджелудочной железы, диарея, целиакоподобный синдром.

Наблюдается также макроцитарная анемия, при которой увеличен средний размер эритроцитов, и панцитопения, для которой характерно снижение количества всех видов клеток крови.

Поражение эндокринной системы сопровождается:

  • задержкой роста и нарушением полового развития;
  • гипогликемией и диабетом;
  • гипоталамо-гипофизарным синдромом с дефицитом СТГ;
  • дисфункцией щитовидной железы;
  • гипотиреозом, нарушением обмена фосфора и кальция и .

Диагностика

Диагностика митохондриальных заболеваний основывается на:

  • Изучении анамнеза. Поскольку все симптомы митохондриальных заболеваний не являются специфическими, диагноз предполагается при комбинации трех и более симптомов.
  • Физикальном обследовании, которое включает тесты на выносливость и силу.
  • Неврологическом обследовании, включающем проверку зрения, рефлексов, речи и познавательных способностей.
  • Специализированных пробах, которые включают наиболее информативный тест – мышечную биопсию, а также фосфорную магнитно-резонансную спектроскопию и др. неинвазивные методы.
  • КТ и МРТ, которые позволяют выявить признаки повреждения головного мозга.
  • ДНК-диагностике, которая позволяет выявить митохондриальные заболевания. Не описанные ранее мутации определяются методом прямого секвенирования мтДНК.

Лечение

Эффективное лечение митохондриальных заболеваний активно разрабатывается. Внимание уделяется:

  • Увеличению эффективности энергетического обмена при помощи тиамина, рибофлавина, никотинамида, коэнзима Q10 (показывает хороший результат при синдроме MELAS), витамина С, цитохрома С и т.д.
  • Профилактике повреждения мембран митохондрий свободными радикалами, для которой используются a-липоевая кислота и витамин Е (антиоксиданты), а также мембранопротекторы (цитиколин, метионин и др.).

Лечение также включает применение креатина моногидрата как альтернативного источника энергии, снижение уровня молочной кислоты и физические упражнения.

Нашли ошибку? Выделите ее и нажмите Ctrl + Enter

Версия для печати

Ключевые слова

НОВОРОЖДЕННЫЕ ДЕТИ / МИТОХОНДРИАЛЬНОЕ ЗАБОЛЕВАНИЕ / СИНДРОМ ИСТОЩЕНИЯ МТДНК 13-ГО ТИПА / ЭНЦЕФАЛОМИОПАТИЯ / ЛАКТАТ-АЦИДОЗ / НЕОНАТАЛЬНАЯ МАНИФЕСТАЦИЯ / ГЕН FBXL4 / NEWBORNS / MITOCHONDRIAL DISORDER / 13 TYPE MTDNA DEPLETION SYNDROME / ENCEPHALOMYOPATHY / LACTIC ACIDOSIS / NEONATAL MANIFESTATION / FBXL4 GENE

Аннотация научной статьи по клинической медицине, автор научной работы - Дегтярева А.В., Степанова Е.В., Иткис Ю.С., Дорофеева Е.И., Нароган М.В.

Представлено клиническое наблюдение ребенка с ранней неонатальной манифестацией редкого наследственного заболевания синдрома истощения митохондриальной ДНК (мтДНК) 13-го типа, подтвержденного лабораторно в России. Мутации в гене FBXL4 являются причиной нарушения репликации мтДНК и снижения активности комплексов дыхательной цепи митохондрий, следствием чего служит нарушение функционального состояния различных органов и систем, в первую очередь мышечной системы и головного мозга. Антенатально у ребенка был диагностирован гидронефроз справа, субэпендимальные кисты головного мозга, частичная кишечная непроходимость на фоне многоводия. Состояние резко ухудшилось к концу первых суток жизни. Отмечался клинический симптомокомплекс сепсиса, выраженный синдром угнетения, мышечной гипотонии, декомпенсированный метаболический лактат-ацидоз , повышение концентрации митохондриальных маркеров в плазме крови и моче, а также изменения в области базальных ганглиев головного мозга. Дифференциальный диагноз проводился с наследственными заболеваниями, протекающими по типу «сепсисподобного» симптомокомплекса с лактат-ацидозом : группа нарушений обмена аминокислот, органических кислот, дефектов ß-окисления жирных кислот, болезни дыхательной цепи митохондрий, гликогеновая болезнь. Синдром истощения мтДНК 13-го типа имеет неблагоприятный прогноз, однако точная диагностика имеет исключительно важное значение для медико-генетического консультирования и позволяет предотвратить повторное рождение больного ребенка в семье.

Похожие темы научных работ по клинической медицине, автор научной работы - Дегтярева А.В., Степанова Е.В., Иткис Ю.С., Дорофеева Е.И., Нароган М.В.

  • Недостаточность митохондриальной деоксигуанозинкиназы

    2009 / Дегтярева Анна Владимировна, Захарова Екатерина Юрьевна, Цыганкова Полина Георгиевна, Чеглецова Елена Владимировна, Готье Сергей Владимирович, Цирульникова Ольга Мартеновна
  • Подострый некротизирующий энцефаломиелит. Клинические наблюдения

    2016 / Онегин Е.В., Бердовская А.Н., Домаренко Т.Н., Данилова Г.С., Мотюк И.Н.
  • Подострая некротизирующая энцефаломиопатия

    2009 / Михайлова Светлана Витальевна, Захарова Екатерина Юрьевна, Харламов Дмитрий Алексеевич, Ильина Елена Степановна, Сухоруков Владимир Сергеевич, Балина Елена Альбертовна, Лузин Анатолий Владимирович, Цыганкова Полина Георгиевна
  • Клинический полиморфизм митохондриальных энцефаломиопатий, обусловленных мутациями гена полимеразы гамма

    2012 / Михайлова Светлана Витальевна, Захарова Екатерина Юрьевна, Цыганкова Полина Георгиевна, Абрукова Анна Викторовна, Политова Екатерина Алексеевна, Балабанова Вера Антонидовна, Печатникова Н.Л., Саввин Дмитрий Анатольевич, Холин Алексей Александрович, Пилия Сергей Варденович
  • Эпилепсия при синдроме melas

    2009 / Мухин К.Ю., Миронов М.Б., Никифорова Н.В., Михайлова С.В., Чадаев В.А., Алиханов А.А., Рыжков Б.Н., Петрухин А.С.
  • Диагностическая ценность исследования цитохимической активности ферментов при наследственных митохондриальных болезнях

    2017 / Казанцева И.А., Котов С.В., Бородатая Е.В., Сидорова О.П., Котов А.С.
  • Дефицит ацил-коэнзим а дегидрогеназы жирных кислот с очень длинной углеродной цепью

    2014 / Дегтярева Анна Владимировна, Никитина Ирина Владимировна, Орловская Ирина Владимировна, Захарова Екатерина Юрьевна, Байдакова Галина Викторовна, Ионов Олег Вадимович, Амирханова Дженнета Юнусовна, Левадная Анна Викторовна
  • Митохондриальные заболевания в детской неврологической практике (клиническое наблюдение)

    2014 / Прыгунова Татьяна Михайловна, Радаева Татьяна Михайловна, Степанова Елена Юрьевна
  • Инсульты при митохондриальных заболеваниях

    2012 / Пизова Н. В.
  • Редкие варианты митохондриальной ДНК у ребенка с энцефаломиопатией

    2016 / Воронкова Анастасия Сергеевна, Литвинова Наталия Александровна, Николаева Екатерина Александровна, Сухоруков Владимир Сергеевич

The article reports clinical case of early neonatal manifestation of a rare genetic disease mitochondrial DNA depletion syndrome, confirmed in laboratory in Russia. Mutations of FBXL4, which encodes an orphan mitochondrial F-box protein, involved in the maintenance of mitochondrial DNA (mtDNA), ultimately leading to disruption of mtDNA replication and decreased activity of mitochondrial respiratory chain complexes. It’s a reason of abnormalities in clinically affected tissues, most of all the muscular system and the brain. In our case hydronephrosis on the right, subependimal cysts of the brain, partial intestinal obstruction accompanied by polyhydramnios were diagnosed antenatal. Baby’s condition at birth was satisfactory and worsened dramatically towards the end of the first day of life. Clinical presentation includes sepsis-like symptom complex, neonatal depression, muscular hypotonia, persistent decompensated lactic acidosis , increase in the concentration of mitochondrial markers in blood plasma and urine, and changes in the basal ganglia of the brain. Imaging of the brain by magnetic resonance imaging (MRI) demonstrated global volume loss particularly the subcortical and periventricular white matter with significant abnormal signal in bilateral basal ganglia and brainstem with associated delayed myelination. Differential diagnosis was carried out with hereditary diseases that occur as a «sepsis-like» symptom complex, accompanied by lactic acidosis : a group of metabolic disorders of amino acids, organic acids, ß-oxidation defects of fatty acids, respiratory mitochondrial chain disorders and glycogen storage disease. The diagnosis was confirmed after sequencing analysis of 62 mytochondrial genes by NGS (Next Generation Sequencing). Reported disease has an unfavorable prognosis, however, accurate diagnosis is very important for genetic counseling and helps prevent the re-birth of a sick child in the family.

Текст научной работы на тему «Клиническое наблюдение пациента с синдромом истощения митохондриальной ДНК»

Клиническое наблюдение пациента с синдромом истощения митохондриальной ДНК

А.В. Дегтярева1,3, Е.В. Степанова1, Ю.С. Иткис2, Е.И. Дорофеева1, М.В. Нароган1,3, Л.В. Ушакова1, А.А. Пучкова1, В.Г. Быченко1, П.Г. Цыганкова2, Т.Д. Крылова2, И.О. Бычков2

1ФГБУ «Научный центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава РФ, Москва;

2ФГБНУ «Медико-генетический научный центр», Москва;

3ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ, Москва, Россия

Clinical case of Mitochondrial DNA Depletion

A.V. Degtyareva1,3, E.V. Stepanova1, Yu.S. Itkis2, E.I. Dorofeeva1, M.V. Narogan1,3,

L.V. Ushakova1, A.A. Puchkova1, V.G. Bychenko1, P.G. Tsygankova2, T.D. Krylova2, I.O. Bychkov2

1«Research Center for Obstetrics, Gynecology and Perinatology» Ministry of Healthcare of the Russian Federation 2FSBI «Research Center for Medical Genetics»

3First Moscow state medical University I.M. Sechenov of Ministry of Healthcare

Представлено клиническое наблюдение ребенка с ранней неонатальной манифестацией редкого наследственного заболевания - синдрома истощения митохондриальной ДНК (мтДНК) 13-го типа, подтвержденного лабораторно в России. Мутации в гене FBXL4 являются причиной нарушения репликации мтДНК и снижения активности комплексов дыхательной цепи митохондрий, следствием чего служит нарушение функционального состояния различных органов и систем, в первую очередь мышечной системы и головного мозга. Антенатально у ребенка был диагностирован гидронефроз справа, субэпендимальные кисты головного мозга, частичная кишечная непроходимость на фоне многоводия. Состояние резко ухудшилось к концу первых суток жизни. Отмечался клинический симптомокомплекс сепсиса, выраженный синдром угнетения, мышечной гипотонии, декомпенсированный метаболический лактат-ацидоз, повышение концентрации митохондриальных маркеров в плазме крови и моче, а также изменения в области базальных ганглиев головного мозга. Дифференциальный диагноз проводился с наследственными заболеваниями, протекающими по типу «сепсисподобного» симптомокомплекса с лактат-ацидозом: группа нарушений обмена аминокислот, органических кислот, дефектов р-окисления жирных кислот, болезни дыхательной цепи митохондрий, гликогеновая болезнь. Синдром истощения мтДНК 13-го типа имеет неблагоприятный прогноз, однако точная диагностика имеет исключительно важное значение для медико-генетического консультирования и позволяет предотвратить повторное рождение больного ребенка в семье.

Ключевые слова: новорожденные дети, митохондриальное заболевание, синдром истощения мтДНК 13-го типа, энцефало-миопатия, лактат-ацидоз, неонатальнаяманифестация, генFBXL4.

Для цитирования: Дегтярева А.В., Степанова Е.В., Иткис Ю.С., Дорофеева Е.И., Нароган М.В., Ушакова Л.В., Пучкова А.А., Быченко В.Г., Цыганкова П.Г., Крылова Т.Д., Бычков И.О. Клиническое наблюдение пациента с синдромом истощения митохондриальной ДНК. Рос вестн перинатол и педиатр 2017; 62:(5): 55-62. DOI: 10.21508/1027-4065-2017-62-5-55-62

Abstract: The article reports clinical case of early neonatal manifestation of a rare genetic disease - mitochondrial DNA depletion syndrome, confirmed in laboratory in Russia. Mutations of FBXL4, which encodes an orphan mitochondrial F-box protein, involved in the maintenance of mitochondrial DNA (mtDNA), ultimately leading to disruption of mtDNA replication and decreased activity of mitochondrial respiratory chain complexes. It"s a reason of abnormalities in clinically affected tissues, most of all the muscular system and the brain. In our case hydronephrosis on the right, subependimal cysts of the brain, partial intestinal obstruction accompanied by polyhydramnios were diagnosed antenatal. Baby"s condition at birth was satisfactory and worsened dramatically towards the end of the first day of life. Clinical presentation includes sepsis-like symptom complex, neonatal depression, muscular hypotonia, persistent decompensated lactic acidosis, increase in the concentration of mitochondrial markers in blood plasma and urine, and changes in the basal ganglia of the brain. Imaging of the brain by magnetic resonance imaging (MRI) demonstrated global volume loss particularly the subcortical and periventricular white matter with significant abnormal signal in bilateral basal ganglia and brainstem with associated delayed myelination. Differential diagnosis was carried out with hereditary diseases that occur as a «sepsis-like» symptom complex, accompanied by lactic acidosis: a group of metabolic disorders of amino acids, organic acids, p-oxidation defects of fatty acids, respiratory mitochondrial chain disorders and glycogen storage disease. The diagnosis was confirmed after sequencing analysis of 62 mytochondrial genes by NGS (Next Generation Sequencing). Reported disease has an unfavorable prognosis, however, accurate diagnosis is very important for genetic counseling and helps prevent the re-birth of a sick child in the family.

Key words: newborns, mitochondrial disorder, 13 type mtDNA depletion syndrome, encephalomyopathy, lactic acidosis, neonatal manifestation, FBXL4 gene.

For citation: Degtyareva A.V., Stepanova E.V., Itkis Yu.S., Dorofeeva E.I., Narogan M.V., Ushakova L.V., Puchkova A.A., Bychenko V.G., Tsygankova P.G., Krylova T.D., Bychkov I.O. Clinical case of FBXL4-Related Encephalomyopathic Mitochondrial DNA Depletion. Ros Vestn Perinatal i Pediatr 2017; 62:(5): 55-62 (in Russ). DOI: 10.21508/1027-4065-2017-62-5-55-62

Митохондрии представляют собой сложные орга-неллы, которые играют ключевую роль в гоме-остазе клетки . Они являются основным источником синтеза внутриклеточной энергии в виде молекул АТФ, тесно вовлечены в процессы кальциевого и свободнорадикального обмена, а также участвуют в апоптозе. Ткани и органы, особенно зависимые от этих функций, первыми страдают при митохон-дриальных болезнях - больше всего это сказывается на мышечной ткани, нервной и эндокринной системах . Большинство митохондриальных заболеваний имеют прогрессирующий характер, приводят к инвалидности и преждевременной смерти. Эти болезни относят к редким, с частотой распространенности 1-1,5: 5000-10 000 новорожденных . Митохондриальные заболевания могут развиться в любом возрасте. Около 30% случаев манифестируют в неонатальном периоде .

Согласно генетической классификации, митохон-дриальные болезни разделяют на следующие группы: 1) заболевания, вызванные точковыми мутациями ми-тохондриальной ДНК (мтДНК) - синдромы MELAS, MERRF, LHON, NARP, имеющие материнское наследование; 2) заболевания, обусловленные единичными крупными перестройками мтДНК - синдромы Кирнса-Сейра, Пирсона; 3) болезни, связанные с мутациями в ядерных генах структурных белков

Адрес для корреспонденции: Дегтярева Анна Владимировна - д.м.н., зав. по клинической работе отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова, проф. кафедры неонатологии Первого Московского государственного медицинского университета имени И.М. Сеченова, ORCID 0000-0003-0822-751X Степанова Екатерина Владимировна - ординатор Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова Дорофеева Елена Игоревна - к.м.н., зав. по клинической работе отделения хирургии новорожденных отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова

Нароган Марина Викторовна - д.м.н., вед. научн. сотр. отделения патологии новорожденных и недоношенных детей отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова, проф. кафедры неонатологии Первого Московского государственного медицинского университета имени И.М. Сеченова Ушакова Любовь Витальевна - к.м.н., врач-невролог научно-консультативного педиатрического отделения отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова

Пучкова Анна Александровна - к.м.н., зав. по клинической работе научно-консультативного педиатрического отделения отдела неонатоло-гии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова

Быченко Владимир Геннадьевич - к.м.н., зав. отделением лучевой диагностики Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова 117997 Москва, ул. академика Опарина, д. 4

Иткис Юлия Сергеевна - научный сотрудник Медико-генетического научного центра

Крылова Татьяна Дмитриевна - врач-лабораторный генетик Медико-генетического научного центра

Бычков Игорь Олегович - аспирант Медико-генетического научного центра 115478 Москва, ул. Москворечье, д.1

дыхательной цепи митохондрий, - синдром Ли, младенческие энцефаломиопатии, наследующиеся ауто-сомно-рецессивно или Х-сцепленно; 4) болезни, связанные с мутациями в ядерных генах белков-переносчиков и сборщиков комплексов дыхательной цепи митохондрий, - синдром Ли, младенческие энцефа-ломиопатии, наследующиеся аутосомно-рецессивно или Х-сцепленно; 5) заболевания, связанные с мутациями в ядерных генах, ответственных за биогенез мтДНК, - синдромы истощения мтДНК с аутосом-но-рецессивным типом наследования.

Одним из биохимических маркеров митохондри-альных болезней является высокий уровень лактата в крови . В комплекс первой линии обследований при подозрении на эту патологию входит определение содержания аминокислот, ацилкарнитинов и органических кислот в крови и моче . Недавно была показана высокая информативность определения концентрации фактора роста фибробластов-21 (FGF-21) и ростового фактора дифференцировки-15 (GDF-15) в плазме крови , однако эффективность этих биомаркеров для диагностики отдельных групп митохондриальных болезней по-прежнему исследуется различными группами ученых . Окончательный диагноз митохондриального заболевания устанавливается на основании результата мо-лекулярно-генетического анализа.

В настоящее время не существует эффективных методов лечения митохондриальных болезней. Симптоматическая терапия основана на использовании метаболических препаратов, таких как коэнзим Q10, креатин моногидрат, рибофлавин, идебенон, кар-нитин, тиамин, дихлорацетат и др. Также следует уделять особое внимание питанию ребенка; рекомендован переход на низкобелковую диету с использованием в рационе большого количества жиров. Противопоказано использование препаратов валь-проевой кислоты и барбитуратов .

Синдромы истощения мтДНК представляют собой клинически и генетически гетерогенную группу заболеваний, наследуемых по аутосомно-рецессив-ному типу и вызванных мутациями в генах, поддерживающих биогенез и целостность мтДНК . При таких нарушениях происходит снижение числа копий мтДНК в пораженных тканях без ее структурного повреждения. Клинически выделяют три формы заболеваний, связанных со снижением ко-пийности мтДНК: энцефаломиопатическую, ми-опатическую и гепатоцеребральную. Известно 20 генов, мутации которых ведут к синдромам истощения мтДНК: ABAT, AGK, C10ORF2 (TWINKLE), DGUOK, DNA2, FBXL4, MFN2, MGME1, MPV17, OPA1, POLG, POLG2, RNASEH1, RRM2B, SLC25A4, SUCLA2, SUCLG1, TFAM, TK2, TYMP . В Российской Федерации в лаборатории наследственных болезней обмена веществ Медико-генетического научного центра были диагностированы у 36 пациентов

синдромы истощения мтДНК с мутациями в генах POLG и TWINKLE (энцефаломиопатическая и гепа-тоцеребральная формы), DGUOK и MPV17 (гепато-церебральная форма), что составило существенную долю от всех ранних форм митохондриальных заболеваний .

Синдром истощения мтДНК 13-го типа (MIMhttp://omim.org/entry/615471 615471) вызван мутациями в гене FBXL4, локализованном в локу-се 6q16.1-q16.27 . Впервые данное нарушение описано в 2013 г. P.E. Bonnen и X. Gai независимо друг от друга . В настоящее время в мире известно 26 клинических наблюдений . Ген FBXL4 кодирует белок (F-box and leucine-rich repeat 4 protein), являющийся одной из субъединиц убик-витинпротеинлигазного комплекса, который играет важную роль в процессе разрушения дефектных белков в клетке, в том числе в митохондриях . Точная функция данного белка неизвестна, но на культурах клеток было показано, что в поврежденных митохондриях снижается синтез АТФ и нарушается репликация мтДНК, что приводит в конечном счете к снижению ее копий в тканях и нарушению работы дыхательной цепи митохондрий .

В большинстве случаев синдром истощения мтДНК 13-го типа манифестирует в раннем неона-тальном периоде, однако описаны наблюдения более поздней манифестации в возрасте до 24 мес . Заболевание характеризуется энцефалопатией, гипотонией, лактат-ацидозом, грубой задержкой развития и изменениями в области базальных ганглиев при магнитно-резонансной томографии (МРТ) головного мозга. По данным M. Huemer и соавт. , у пациентов с мутациями в гене FBXL4 отмечаются такие фе-нотипические признаки, как узкое и длинное лицо, выступающий лоб, густые брови, узкие глазные щели, широкая переносица, седловидный нос.

Прогноз является крайне неблагоприятным, большинство детей умирают в первые 4 года жизни. Установление диагноза заболевания имеет большую значимость для медико-генетического консультирования и возможной пренатальной диагностики .

Цель данной публикации - клиническое описание первого российского случая митохондриально-го заболевания, обусловленного мутациями в гене FBXL4, и определение основных критериев для диагностики синдромов истощения мтДНК в раннем детском возрасте.

Пациент и методы исследования

Девочка родилась и находилась под динамическим наблюдением в Научном центре акушерства, гинекологии и перинатологии им. В.И. Кулакова. Проводилось комплексное клинико-лабораторное и инструментальное обследование. Некоторые биохимические и молекулярно-генетические исследования осуществлены в лаборатории наследственных

болезней обмена веществ Медико-генетического научного центра. Органические кислоты в моче анализировались методом газовой хроматографии с масс-спектрометрической детекцией в виде три-метилсилиловых эфиров. Пробоподготовка проводилась по методу, предложенному M. Lefevere . Анализ выполнялся на приборе 7890А/5975С (Agilent Technologies, США) с колонкой НР-5МS (30м*0,25мм*4мкм). Расчет полученных результатов осуществляли методом внутреннего стандарта. Концентрацию митохондриальных маркеров FGF-21 и GDF-15 в плазме крови измеряли с помощью наборов на основе метода иммуноферментного анализа фирмы Biovendor (Czech Republic).

ДНК выделяли из цельной крови наборами фирмы Isogene (Россия) по протоколу производителя. Секвенирование 62 ядерных митохондриальных генов проведено методом NGS (Next Generation Sequencing) на приборе Ion Torrent PGM™ System for Next-Generation Sequencing (Life Technologies, Thermo Fisher Scientific). Пробоподготовка образцов ДНК проводилась набором реагентов Ion AmpliSeq™ Library Kit 2.0 (дизайн пула праймеров по технологии Ampliseq) согласно протоколу производителя. Визуализация выравнивания секвенируемых фрагментов на референсную последовательность генома человека Human.hg19 проведена в программе IGV. Обнаруженные изменения аннотировались с помощью программы ANNOVAR. Предсказательная функциональная значимость не описанных ранее мутаций оценивалась по различным программам со свободным доступом (PolyPhen2, Mutation taster, SIFT). Выявленные варианты фильтровались по частоте встречаемости в популяциях по данным, представленным в открытых базах ExAc, 1000 genomes и др. Нуклеотидные замены, отличные от референсной последовательности, анализировались по базам данных по мутациям и полиморфизмам (HGMD, Ensemble, dbSNP). Верификацию выявленных в гене FBXL4 мутаций проводили методом прямого автоматического секвениро-вания на генетическом анализаторе ABI3500 (Thermo Fisher Scientific) с использованием BigDye Terminator v.1.1 (Thermo Fisher Scientific). Для полимеразной цепной реакции (ПЦР) использовали специфические олигонуклеотидные праймеры (последовательность доступна по запросу). Выравнивание и сравнение данных проведено в соответствии с транскриптом NM_012160.

Клиническое наблюдение

Ребенок родился в срок у соматически здоровой женщины с отягощенным акушерско-гинекологиче-ским и инфекционным анамнезом. Брак не родственный. В семье есть один здоровый ребенок. Беременность протекала с обострением сальпингоофорита в I триместре, пульпитом с повышением температуры до 38°С, завершилась самостоятельными родами.

Ребенок родился с массой тела 2555 г, длиной 49 см, оценкой по шкале Апгар 8/9 баллов. Антенатально был диагностирован гидронефроз справа, субэпенди-мальные кисты головного мозга и частичная кишечная непроходимость на фоне многоводия. Первые часы жизни имели характер «периода относительного благополучия», однако, учитывая антенатально выявленную патологию, ребенок был переведен в отделение хирургии, реанимации и интенсивной терапии новорожденных для обследования.

К концу первых суток жизни состояние резко ухудшилось, наблюдался выраженный синдром угнетения, мышечная гипотония, ухудшение гемодинамики, дыхательные нарушения, потребовавшие проведения искусственной вентиляции легких. По кислотно-основному состоянию и газовому составу крови отмечался декомпенсированный метаболический лактат-ацидоз (pH 7,12; pCO2 12,6 мм рт.ст; pO2 71,9 мм рт.ст., BE -24,2 ммоль/л; лактат 19,0 ммоль/л). Исходя из данных анамнеза нельзя было исключить наличие инфекционного процесса, и ребенку была назначена антибактериальная и иммуномоделирую-щая терапия. В клиническом анализе крови отмечался лейкоцитоз со сдвигом формулы влево, снижение содержания гемоглобина, уровень тромбоцитов был в пределах нормативных значений (табл. 1).

При этом маркеры системной воспалительной реакции (С-реактивный белок и прокальцитонин) были отрицательными (0,24 мг/л и 10 нг/мл соответственно) и в ходе обследования не были выявлены очаги инфекции. С целью исключения врожденной пневмонии было проведено рентгенологическое исследование, по результатам которого не было обнаружено специфических изменений. На основании результатов люмбальной пункции был исключен менингит. Клинический анализ мочи тоже не выявил

Таблица 1. Показатели клинического анализа крови пациентки Table 1. The parameters of the clinical blood test of the patient

воспалительных изменений. Кроме того, были получены отрицательные результаты микробиологических посевов крови и мочи, соскоба из зева и серологического исследования на TORCH-инфекции.

В неврологическом статусе отмечался синдром выраженного угнетения, менингеальной симптоматики не было, наблюдалось непостоянное расходящееся косоглазие, выраженная диффузная мышечная гипотония. В терапию был подключен метаболический препарат меглюминат натрия сукцинат (Реам-берин) и стимулятор синтеза ацетилхолина и фосфа-тидилхолина - холина альфоссцерат (Холитилин). На фоне проводимого посиндромного лечения отмечалась положительная динамика, к 8-м суткам жизни ребенок был снят с респираторной терапии. По результатам клинического анализа крови воспалительные изменения купировались, маркеры воспаления С-реактивный белок и прокальцитонин оставались в пределах нормы. Однако у ребенка сохранялись признаки выраженной мышечной гипотонии, синдрома угнетения ЦНС и лактат-ацидоз (9,5 ммоль/л). Важно отметить, что уровень лактата ни разу не снижался до нормальных значений и носил волнообразный характер в течение всего периода пребывания в стационаре (рис. 1).

Расхождение между клиническими признаками сепсиса с выраженным декомпенсированным лак-тат-ацидозом, отрицательными маркерами системной воспалительной реакции и ответом на лечение явилось поводом заподозрить метаболическое нарушение. В спектр дифференциальной диагностики были включены заболевания, протекающие в нео-натальном периоде по типу «сепсисподобного» сим-птомокомплекса с лактат-ацидозом: группа нарушений обмена аминокислот, органических кислот, дефектов р-окисления жирных кислот, болезни ды-

Показатели 2-е сутки жизни Референсные значения (1-7-е сутки жизни) 8-е сутки жизни Референсные значения (> 7 сут жизни)

Эритроциты, -1012/л 4,03 5,5-7,0 4,42 4,5-5,5

Гемоглобин, г/л 137 160-190 136 180-240

Гематокрит 40,9 0,41-0,56 38,1 0,41-0,56

Тромбоциты, -199/л 236 218-419 213 218-419

Лейкоциты, -109/л 49,11 5,0-30,0 11,72 8,5-14,0

Нейтрофилы, -109/л 27. 514 6- 20 4. 342 1,5 - 7,0

Нейтрофильный индекс 0,44 < 0,25 0,16 < 0,25

Палочкоядерные, % 16 5-12 6 1-5

Сегментоядерные, % 56 50-70 47 35-55

Эозинофилы, % 0 1-4 3 1-4

Моноциты, % 9 4-10 18 6-14

Лимфоциты, % 10 16-32 32 30-50

хательной цепи митохондрий и гли-когеновая болезнь I типа (болезнь Гирке) . Ребенку проводилась проба с кормлением, в основе лежит определение концентрации глюкозы и лактата в крови после голодной паузы и через 20-30 мин после кормления . По результатам данного исследования уровень глюкозы крови натощак был снижен, а уровень лактата повышен, после кормления отмечалось увеличение уровня глюкозы и выраженное нарастание лак-татемии (табл. 2).

В группу первой линии обследования были включены тесты, определяющие спектр аминокислот и ацилкарнитинов в крови и органических кислот в моче, а также плазменных митохон-дриальных биомаркеров FGF-21 и GDF-15. В крови было обнаружено повышенное содержание аланина, лейцина и орнитина (табл. 3). Спектр ацилкарнити-нов в крови был в пределах нормы, что позволило исключить заболевания из группы дефектов ß-окис-ления жирных кислот . При исследовании мочи обнаружено повышение уровня лактата, фумаровой кислоты, 3-гидроксибутирата, пирувата, сукцината и 4-гидроксифенилпирувата (см. табл. 3). Данные изменения могут свидетельствовать о митохондриаль-

Таблица 2. Результаты проведения пробы с кормлением Table 2. Results of a sample with feeding

Рис. 1. Динамика концентрации лактата крови (в ммоль/л). Fig. 1. Dynamics of blood lactate concentration.

ном нарушении и фумаровой ацидурии .

Проводилось молекулярно-генетическое исследование нуклеотидной последовательности гена FH, мутации которого обусловливают развитие фумаровой ацидурии . Отклонений от нормы не обнаружено.

Концентрация митохондриальных маркеров FGF-21 и GDF-15 в плазме крови была повышена и составила 720 пг/мл (норма 0-330 пг/мл) и 15715 пг/мл (норма 0-2000 пг/мл) соответственно.

В возрасте 8 сут жизни ребенку проводилась МРТ головного мозга, по результатам которой было обнаружено симметричное поражение подкорковых ядер в виде кистозных изменений, что является высоко-

Показатель До еды Через 20-30 мин после еды

BE, ммоль/л - 6,2 - 7,7

Глюкоза, ммоль/л 2,1 2,7

Лактат, ммоль/л 5,8 9.2

p CO2, мм рт.ст. 33,4 29,2

Таблица 3. Уровень аминокислот в крови и органических кислот в моче у пациентки Table 3. The level of patient"s amino acids in the blood and organic acids in the urine

Показатель Нижняя граница нормы Верхняя граница нормы Значение у пациентки

Аминокислоты в крови, нмоль/л

Аланин 85 750 1139,327

Лейцин 35 300 405,533

Орнитин 29 400 409,205

Органические кислоты в моче, моль на моль креатинина

Лактат 0,00 25,00 82,9

Фумаровая кислота 0,00 2,00 274,2

3-гидроксибутират 0,00 3,00 18,2

Пируват 0,00 12,00 13,7

Сукцинат 0,50 16,00 103,4

4-гидроксифенилпируват 0,00 2,00 39,5

патогномоничным признаком митохондри-альных болезней. Также были выявлены последствия кровоизлияния в боковые желудочки мозга (рис. 2).

Учитывая клинико-лабораторный сим -птомокомплекс, заподозрили митохондри-альное заболевание из группы младенческих энцефаломиопатий. Методом таргетного секвенирования ребенку был проведен анализ кодирующей последовательности 62 ядерных генов, мутации в которых приводят к развитию митохондриальной патологии. В гене FBXL4 были выявлены две компаунд-гетерозиготные мутации c.A1694G:p. D565G (в 8-м экзоне) и c.627_633del:p.V209fs (в 4-м экзоне). Мутация c.A1694G:p.D565G

Рис. 2. МРТ головного мозга ребенка в возрасте 8 сут жизни. A - Т2 взвешенное изображение в аксиальной плоскости. Белыми стрелками показаны кисты по контурам боковых желудочков, являющиеся характерным признаком митохондриальных заболеваний. Красными стрелками находится в высококонсервативной области показаны продукты биодеградации гемоглобина в просвете желудочковой LRR (Leucine-Rich Repeat) домена и была системы (последствия внутрижелудочкового кровоизлияния).

Б - томограмма выполнена в режиме Flair в аксиальной плоскости. Белыми стрелками показаны кисты в паравентрикулярных областях и в проекции подкорковых ядер, что характерно для митохондриальных заболеваний. Fig. 2. MRI of the child"s brain at the age of 8 days of life. A - Т2 weighted image in the axial plane. White arrows show cysts along the contours of the lateral ventricles, which are a characteristic feature of mitochondrial diseases. Red arrows show the products of biodegradation of hemoglobin in the lumen of the ventricular system (consequences of intraventricular hemorrhage). B - the tomogram is performed in the Flair in the axial plane. White arrows show cysts in paraventricular regions and in the projection of the subcortical nuclei, which is characteristic of mitochondrial diseases.

ранее описана в литературе . Вторая мутация обнаружена впервые у нашей пациентки, и ее патогенность не вызывает сомнений, поскольку она приводит к сдвигу рамки считывания и образованию преждевременного стоп-кодона.

В возрасте 42 дней ребенок был выписан домой в состоянии средней степени тяжести. В катамнезе сохранялись признаки угнетения ЦНС, выраженная мышечная гипотония, тенденция к птозу, деком-пенсированный метаболический лактат-ацидоз, задержка психомоторного развития, дисфагия, монотонная плоская весовая кривая, частые рецидивирующие респираторные инфекции, что в дальнейшем привело к развитию полиорганной недостаточности и летальному исходу в возрасте 11 мес жизни.

Обсуждение

В нашем наблюдении антенатально были диагностированы гидронефроз справа, субэпендималь-ные кисты головного мозга и частичная кишечная непроходимость на фоне многоводия. Данная картина при проведении пренатальной ультразвуковой диагностики описана при мутациях в гене FBXL4 . Приблизительно в 10% случаев многоводие возникает на фоне врожденных заболеваний , в том числе и наследственных заболеваний обмена веществ . В наблюдении M. Van Rij и соавт. у пациента также было диагностировано выраженное мно-говодие в 30 нед внутриутробного развития и было обнаружено органическое поражение структуры головного мозга в виде гипоплазии мозжечка, субэ-пендимальных кист и расширения большой цистерны головного мозга . О пренатальном выявлении субэпендимальных кист головного мозга сообщено и в наблюдении T. Baroy и соавт. . При митохон-дриальных заболеваниях также описаны случаи пре-натальной диагностики гидронефроза .

Состояние ребенка резко ухудшилось к концу 1-х суток жизни после периода «светлого промежутка», отмечался выраженный синдром угнетения, мышечная гипотония, дыхательные нарушения (потребовавшие проведения искусственной вентиляции легких), ухудшение гемодинамики, декомпенсиро-ванный метаболический лактат-ацидоз. Неонаталь-ная манифестация синдрома истощения мтДНК в более чем 80% случаев описана в виде выраженного синдрома угнетения, мышечной гипотонии, энцефалопатии, дисфагии с эпизодами срыгивания в сочетании с повышенным уровнем лактата и метаболическим ацидозом, возникающими после периода «светлого промежутка» . Патогенетически повышение уровня лактата связано с тем, что при функциональном нарушении дыхательной цепи изменяется окислительно-восстановительный баланс в цитоплазме, что приводит к нарушению функционирования цикла Кребса из-за избытка НАДН по отношению к НАД+. Этот процесс приводит к увеличению концентрации лактата, повышению молярного соотношения лактат/пируват и концентрации кетоновых тел в крови . Согласно данным литературы, уровень лактата у детей с синдромом истощения мтДНК 13-го типа составляет от 6,3 до 21 ммоль/л. Отмечается повышение уровня лак-тата в цереброспинальной жидкости . Нормальное молярное соотношение лактат/пируват состав-

ляет <20, тогда как, по данным M. Van Rij и соавт., у детей с мутациями в гене FBXL4 этот показатель составил 71 . У нашей пациентки уровень пирува-та не исследовался.

В нашем наблюдении гиперлактатемия являлась ведущей лабораторной характеристикой заболевания, однако этот признак не является высокоспецифичным. Причинами повышения концентрации лак-тата в крови также могут служить перинатальная асфиксия, врожденные пороки сердца, сепсис, заболевания печени и почек, дефекты р-окисления жирных кислот, органические ацидурии, нарушение метаболизма биотина, углеводного обмена и др., что представляет большие трудности для ранней диагностики патологии .

При обследовании пациента наблюдалось несоответствие между клиническими признаками инфекционного процесса с декомпенсированным лактат-ацидозом и отрицательными маркерами системной воспалительной реакции в сочетании с отсутствием очагов инфекции и бактериемии. На фоне посин-дромной терапии отмечалось некоторое улучшение состояния ребенка, но при этом сохранялись неврологические нарушения и выраженный лактат-ацидоз, что позволило заподозрить метаболическое заболевание. При исследовании спектра аминокислот была выявлена повышенная концентрация аланина, лейцина и орнитина, что часто обнаруживают при лактат-ацидозе. Уровень лактата в моче, а также метаболитов цикла Кребса (фумаровой кислоты, пирувата, сукци-ната) был значительно повышен, что также характерно для ряда митохондриальных заболеваний. Схожие изменения органических кислот в моче были описаны M.C. Van Rij и соавт. в клиническом наблюдении ре-

бенка с синдромом истощения мтДНК 13-го типа .

У нашей пациентки концентрация FGF-21 в плазме превышала верхнюю границу нормы в 2 раза, а концентрация GDF-15 - более чем в 7 раз. Эти данные соответствуют недавним публикациям о том, что GDF-15 является более чувствительным маркером митохондриальной патологии. При гепато-церебральных формах синдрома истощения мтДНК уровень обоих маркеров повышается в среднем в 15 раз выше границы нормы . В возрасте 8 сут жизни ребенку проводилась МРТ головного мозга, на которой были обнаружены высокоспецифичные признаки энцефаломиопатической формы митохон-дриального заболевания: симметричные поражения подкорковых ядер в виде кистозных изменений .

Таким образом, в настоящей работе представлено наблюдение пациентки с неонатальной манифестацией митохондриального заболевания - синдромом истощения мтДНК 13-го типа, обусловленным мутациями в гене FBXL4. Первые признаки заболевания были неспецифичными и имели характер сепсиспо-добного симптомокомплекса, появившегося после периода светлого промежутка в состоянии ребенка. Отмечался выраженный синдром угнетения, мышечной гипотонии, а также стойкий лактат-ацидоз, повышение уровня митохондриальных биомаркеров FGF-21 и GDF-15 в плазме крови и симметричные поражения в подкорковых структурах на МРТ головного мозга. В настоящее время не существует патогенетического лечения синдрома истощения мтДНК, но выявление генотипа пациента дает основание для проведения пренатальной диагностики, которая поможет предотвратить повторное рождение больного ребенка в семье.

ЛИТЕРАТУРА (REFERENCES)

1. Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283: 1482-1488.

2. Pfeffer G., Majamaa K., Turnbull D.M., Thorburn D., Chin-nery P.F. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012; 4: 1-42. DOI: 10.1002/14651858. CD004426.pub3

3. Maypek E. Inborn Errors of Metabolism - Early Detection, Key Symptoms and Therapeutic Options. Bremen. UNI-MED, 2008; 128.

4. Schaefer A.M., Taylor R.W., Turnbull D.M., Chin-nery P.F. The epidemiology of mitochondrial disorders-past, present and future. Biochim Biophys Acta 2004; 1659: 115-120.

5. Honzik T, Tesarova M., Magner M., Mayr J., Jesina Р. et al. Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis. J Inherit Metab Dis 2012; 35: 749-759. DOI 10.1007/s10545-011-9440-3

6. Gibson K., Halliday J.L., Kirby D.M., Yaplito-Lee J., Thorburn D.R., Boneh A. Mitochondrial oxidative phosphoryla-tion disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses. Pediatrics 2015; 122: 1003-1008. DOI: 10.1542/peds.2007-3502

7. Debray F.G., Lambert M., Mitchell G.A. Disorders of mito-

chondrial function. Curr Opin Pediatr 2008; 20: 471-482. DOI: 10.1097/M0P.0b013e328306ebb6

8. Van Rij M.C., Jansen F.A.R., Hellebrekers D.M.E.I., Onken-hout W, Smeets H.J.M., Hendrickx A.T. et al. Polyhydramnios and cerebellar atrophy: a prenatal presentation of mitochondrial encephalomyopathy caused by mutations in the FBXL4 gene. Clin Case Rep 2016; 4 (4): 425-428. DOI: 10.1002/ccr3.511

9. Koene S., Smeitink J. Mitochondrial medicine. A clinical guideline. First edition. Netherlands. Khondrion, Nijmegen, 2011; 135.

10. Крылова Т.Д., Прошлякова Т.Ю., Байдакова Г.В., Ит-кис Ю.С., Куркина М.В., Захарова Е.Ю. Биомаркеры в диагностике и мониторинге лечения болезней клеточных органелл. Медицинская генетика 2016; 15 (7): 3-10.

11. Liang C., Ahmad K, Sue C.M. The broadening spectrum of mitochondrial disease: Shifts in the diagnostic paradigm. Biochim Biophys Acta 2014; 1840 (4): 1360-1367. DOI: 10.1016/j.bbagen.2013.10.040

12. Davis R., Liang C., Edema-Hildebrand F., Riley C., Need-ham M. Fibroblast growth factor 21 is a sensitive bio-marker of mitochondrial disease. Neurology. Amer Acad Neurol 2013; 81: 1819-1826. DOI: 10.1212/01. wnl.0000436068.43384.ef

13. Pagliarini D.J., Calvo S.E., Chang B, Sheth S.A., Vafai S.B., Ong S.E. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008; 134 (1): 112-123. DOI: 10.1016/j.cell.2008.06.016

14. Даниленко Н.Г., Цыганкова П.Г., Сивицкая Л.Н., Левдан-ский О.Д., Давыденко О.Г. Синдромы митохондриальной деплеции в неврологической практике: клинические особенности и ДНК-диагностика. Неврология и нейрохирургия (Восточная Европа) 2013; 19 (3): 97-111.

15. El-Hattab A.W., Craigen W.J., Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta 2017; 1863 (6): 1539-1555. DOI: 10.1016/j.bbadis.2017.02.017

16. Дегтярева А.В., Захарова Е.Ю., Цыганкова П.Г., Чеглецо-ва Е.В., Готье С.В., Цырюльникова О.М. Недостаточность митохондриальной деоксигуанозинкиназы. Вестник Российского государственного медицинского университета 2009; 1: 27-30.

17. Михайлова С.В., Захарова Е.Ю., Цыганкова П.Г., Абруко-ва А.В. Клинический полиморфизм митохондриальных энцефаломиопатий, обусловленных мутациями гена полимеразы гамма. Рос вестн пед и перинатол 2012; 57: 4(2): 54-61.

18. Bonnen P.E., Yarham J.W., Besse A., Wu P., Faqeih E.A., Al-Asmari A.M. et al. Mutations in FBXL4 cause mitochon-drial encephalopathy and a disorder of mitochondrial DNA maintenance. Am J Hum Genet 2013; 93: 471-481. DOI: 10.1016/j.ajhg.2013.07.017

19. Gai X., Ghezzi D., Johnson M.A., Biagosch C.A., Shamseld-in H.E., Haack T.B. et al. Mutations in FBXL4, encoding

Поступила 20.05.17

поддержки, о которых необходимо сообщить.

a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am J Hum Genet 2013; 93: 482-495. DOI: 10.1016/j.ajhg.2013.07.016

20. Huemer M., Karall D., Schossig A., Abdenur J.E. Clinical, morphological, biochemical, imaging and outcome parameters in 21 individuals with mitochondrial maintenance defect related to FBXL4 mutations. J Inherit Metab Dis 2015; 38 (5): 905-914. DOI:10.1007/s10545-015-9836-6

21. Antoun G., McBride S., Vanstone J., Naas T., Michaud J., Red-path S. Detailed Biochemical and Bioenergetic Characterization of FBXL4-Related Encephalomyopathic Mitochondrial DNA Depletion. JIMD Reports 2016; 27: 1-9. DOI: 10.1007/8904_2015_491

22. Baroy T., Pedurupillay C., Bliksrud Y, Rasmussen M., Holmgren A., VigelandM.D. et al. A novel mutation in FBXL4 in a Norwegian child with encephalomyopathic mitochondrial DNA depletion syndrome 13. Eur J Med Genet 2016; 59; 342-346. DOI: 10.1016/j.ejmg.2016.05.005

23. Winston J. T., Koepp D. M., Zhu C., Elledge S. J., Harper J. W. et al. A family of mammalian F-box proteins. Curr Biol 1999; 9: 1180-1182

24. Nirupam N., Nangia S., Kumar A., Saili A. An unusual case ofhyperlactataemia in a neonate. Intern J STD & AIDS 2012; 24 (12): 986-988. DOI: 10.1177/0956462413487326

25. Lefevere M.F., Verhaeghe B.J., Declerck D.H., Van Bocxlaer J.F., De Leenheer A.P., De Sagher R.M. Metabolic Profiling of Urinary Organic Acids by Single and Multicolumn Capillary Gas Chromatography. J Chromatogr Sci 1989; 27 (1): 23-29.

26. Mroch A.R., Laudenschlager M., Flanagan J.D. Detection of a novel FH whole gene deletion in the propositus leading to subsequent prenatal diagnosis in a sibship with fumarase deficiency. Am J Med Genet Part A 2012; 158A: 155-158. DOI: 10.1002/ajmg.a.34344

27. Dashe J., McIntire R.D., Ramus R., Santos-Ramos, Twick-ler D.M. Hydramnios: anomaly prevalence and sonographic detection. Obstet Gynecol 2002; 100: 134-139.

28. Raju G.P., Li H.C., Bali D., Chen Y.T., Urion D.K., Lidov H.G. et al. A case of congenital glycogen storage disease type IV with a novel GBE1 mutation. J Child Neurol 2008; 23: 349352. DOI: 10.1177/0883073807309248

29. Montero R., Yubero D., Villarroya J., Henares D., Jou C., Rodriguez M.A., Ramos F. et al. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondri-al Dysfunction. PLoS ONE 2016; 11 (2): e0148709.

Список сокращений.

(ATP) АТФ - аденозинтрифрсфат

(mtDNA) мтДНК - митохондриальная ДНК

(ox-phos) ОФ - окислительное фосфорилирование

(NADH) НАД-Н - восстановленный никотинамидадениндинуклеотид

(FADH) ФАД-Н - востановленный флавинадениндинуклеотид

(TCA) ТКК - трикарбоновые кислоты

(ЕТС) ЦПЭ - цепь передачи электронов

(PDH) ПДГ - пируватдегидрогеназа

(CoA) КоА - коэнзим А

(ТРР) ТПФ - тиаминпирофосфат

(ADP) АДФ - аденозиндифосфат

(ROS) РФК - реактивные формы кислорода

(MnSOD) Mn-СОД - Mn- супероксиддисмутаза

(ZnSOD) Zn-СОД - Zn-супероксиддисмутаза

(GPX) ГП - глутатионпероксидаза

(PRX) ПР - пероксидредоксин

(mtNOS) мтСОА - митохондриальная синтаза оксида азота

(TNF α) ФНОα - фактор некроза опухолей α

(NF-kappa β) ЯФ-каппа β- ядерный фактор- каппа β

(ppm) чнм - частей на миллион

(SDH) СДГ - сукцинатдегидрогеназа

(COX) ЦОК - цитохром-с-оксидаза

(IU) МЕ - международная единица (мера вещества)


Митохондрии выполняют роль электростанций в наших клетках. Они отвечают за создание энергии в форме аденозинтрифосфата (АТФ) и участвуют в путях передачи сигналов апоптоза. Имеющаяся в настоящее время теория гласит, что митохондрии являются потомками аэробных бактерий, которые колинизировали древних прокариот около 1-3 миллионов лет назад }

© 2024 lifestoryclub.ru - Клуб семейных историй