Динамическая локализация функций в коре полушарий большого мозга. Функциональная организация мозга Разрушение лобных долей мозга у животного лишает его возможности оценивать и исправлять допускаемые ошибки, вследствие чего поведение теряет свой организова

Динамическая локализация функций в коре полушарий большого мозга. Функциональная организация мозга Разрушение лобных долей мозга у животного лишает его возможности оценивать и исправлять допускаемые ошибки, вследствие чего поведение теряет свой организова

На основании многочисленных исследований с определенной точностью установлено функциональное значение различных областей коры полушарий большого мозга.

Участки коры полушарий, имеющие характерную цитоархитектонику, и нервные связи, участвующие в выполнении определенных функций, являются нервными центрами. Поражение таких участков коры проявляется в утрате присущих им функций. Нервные центры коры полушарий большого мозга могут быть разделены на проекционные и ассоциативные.

Проекционные центры – это участки коры полушарий большого мозга, представляющие собой корковую часть анализатора, имеющие непосредственную морфофункциональную связь через афферентные или эфферентные проводящие пути с нейронами подкорковых центров. Они осуществляют первичную обработку поступающей сознательной афферентной информации и реализацию осознанной эфферентной информации (произвольные двигательные акты).

Ассоциативные центры – это участки коры полушарий большого мозга, не имеющие непосредственной связи с подкорковыми образованиями, а связанные временной двусторонней связью с проекционными центрами. Ассоциативные центры играют первостепенную роль в осуществлении высшей нервной деятельности (глубокая обработка сознательной афферентной информации, мыслительная деятельность, память и т.д.).

В настоящее время достаточно точно выяснена динамическая локализация некоторых функций коры полушарий большого мозга.

Участки коры полушарий большого мозга, не являющиеся проекционными или ассоциативными центрами, участвуют в выполнении межанализаторной интегративной деятельности головного мозга.

Проекционные нервные центры коры полушарий большого мозга развиваются как у человека, так и у высших позвоночных животных. Они начинают функционировать сразу же после рождения. Формирование этих центров завершается гораздо раньше, чем ассоциативных. В практическом отношении важными являются следующие проекционные центры.

1. Проекционный центр общей чувствительности (тактильной, болевой, температурной и сознательной проприоцептивной) также называют кожным анализатором общей чувствительности. Он локализуется в коре постцентральной извилины (поля 1, 2, 3). В нем заканчиваются волокна, идущие в составе таламо-коркового пути. Каждый участок противоположной половины тела имеет отчетливую проекцию в корковом конце кожного анализатора (соматотопическая проекция). В верхнем отделе постцентральной извилины проецируются нижняя конечность и туловище, в среднем – верхняя конечность и в нижнем – голова (сенсорный гомункулюс Пенфилда). Размеры проекционных зон соматосенсорной коры прямо пропорциональны количеству рецепторов, находящихся в кожных покровах. Этим объясняется наличие наиболее крупных соматосенсорных зон, соответствующих лицу и кисти (рис. 3.25). Поражение постцентральной извилины вызывает утрату тактильной, болевой, температурной чувствительности и мышечно-суставного чувства на противоположной половине тела.

Рис. 3.25.

  • 1 – половые органы; 2 – стопа; 3 – бедро; 4 – туловище; 5 – кисть; 6 – указательный и большой пальцы кисти; 7 – лицо; 8 – зубы; 9 – язык; 10 – глотка и внутренние органы
  • 2. Проекционный центр двигательных функций (кинестетический центр), или двигательный анализатор, располагается в двигательной области коры, включающей пред- центральиую извилину и околоцентральную дольку (поля 4, 6). В 3–4-м слоях коры двигательного анализатора заканчиваются волокна, идущие в составе таламо-коркового пути.

Здесь осуществляется анализ проприоцептивных (кинестетических) раздражений. В пятом слое коры располагается ядро двигательного анализатора, от нейроцитов которого берут начало корково-спинномозговой и корково-ядерный пути. В предцентральной извилине также имеется четкая соматотопическая локализация двигательных функций. Мышцы, выполняющие сложные и тонко дифференцированные движения, имеют большую проекционную зону в коре предцентральной извилины. Наибольшую площадь занимает проекция мышц языка, лица и кисти, наименьшую – проекция мышц туловища и нижних конечностей. Соматотопическая проекция на предцентральную извилину носит название "моторный гомункулюс Пенфилда". Тело человека проецируется на извилине "вверх ногами", причем проекция осуществляется на кору противоположного полушария (рис. 3.26).

Афферентные волокна, заканчивающиеся в чувствительных слоях коры кинестетического центра, первоначально проходят в составе путей Голля, Бурдаха и ядерно-таламического тракта, проводящих импульсы сознательной проприоцептивной чувствительности. Поражение предцентральной извилины приводит к нарушению восприятия раздражений от скелетных мышц, связок, суставов и надкостницы. Корково-спинномозговой и корково-ядерный пути проводят импульсы, обеспечивающие сознательные движения, и оказывают тормозное воздействие на сегментарный аппарат ствола головного и спинного мозга. Корковый центр двигательного анализатора через систему ассоциативных волокон имеет многочисленные связи с различными корковыми сенсорными центрами (центром общей чувствительности, центром зрения, слуха, вестибулярных функций и т.д.). Указанные связи необходимы для выполнения интегративных функций при выполнении произвольных движений.

3. Проекционный центр схемы тела располагается в области внутритеменной борозды (поле 40s). В нем представлены соматотопические проекции всех частей тела. В центр схемы тела поступают импульсы преимущественно сознательной проприоцептивной чувствительности. Основное функциональное назначение данного проекционного центра – определение положения тела и отдельных его частей в пространстве и оценка тонуса мускулатуры. При поражении верхней теменной дольки наблюдается нарушение таких функций, как узнавание частей собственного тела, ощущение лишних конечностей, нарушения определения положения отдельных частей тела в пространстве.

Рис. 3.26.

  • 1 – стопа; 2 – голень; 3 – колено; 4 – бедро; 5 – туловище; 6 – кисть; 7 – большой палец кисти; 8 – шея; 9 – лицо; 10 – губы; 11 – язык; 12 – гортань
  • 4. Проекционный центр слуха, или ядро слухового анализатора, располагается в средней трети верхней височной извилины (поле 22). В этом центре заканчиваются волокна слухового пути, происходящие от нейронов медиального коленчатого тела (подкорковый центр слуха) своей и, преимущественно, противоположной сторон. В конечном счете волокна слухового пути проходят в составе слуховой лучистости.

При поражении проекционного центра слуха с одной стороны отмечается понижение слуха на оба уха, причем с противоположной стороны от очага поражения слух снижается в большей степени. Полная глухота наблюдается только при двустороннем поражении проекционных центров слуха.

5. Проекционный центр зрения, или ядро зрительного анализатора, локализуется на медиальной поверхности затылочной доли, по краям шпорной борозды (поле 17). В нем заканчиваются волокна зрительного пути со своей и противоположной сторон, происходящие от нейронов латерального коленчатого тела (подкорковый центр зрения). На шпорную борозду имеется определенная соматотопическая проекция различных участков сетчатки.

Одностороннее поражение проекционного центра зрения сопровождается частичной слепотой на оба глаза, но в различных участках сетчатки. Полная слепота наступает только при двустороннем поражении.

  • 6. Проекционный центр обоняния, или ядро обонятельного анализатора, располагается на медиальной поверхности височной доли в коре парагиппокампальной извилины и в крючке. Здесь заканчиваются волокна обонятельного пути со своей и противоположной сторон, происходящие от нейронов обонятельного треугольника. При одностороннем поражении проекционного центра обоняния отмечаются снижение обоняния и обонятельные галлюцинации.
  • 7. Проекционный центр вкуса, или ядро вкусового анализатора, располагается там же, где и проекционный центр обоняния, т.е. в лимбической области мозга (крючок и парагиппокампальная извилина). В проекционном центре вкуса заканчиваются волокна вкусового пути своей и противоположной сторон, происходящие от нейронов базальных ядер таламуса. При поражении лимбической области наблюдаются расстройства вкуса, обоняния, нередко появляются соответствующие галлюцинации.
  • 8. Проекционный центр чувствительности от внутренних органов, или анализатор висцероцепции, располагается в нижней трети постцентральной и предцентральной извилин (поле 43). В корковую часть анализатора висцероцепции поступают афферентные импульсы от гладкой мускулатуры и слизистых оболочек внутренних органов. В коре данной области заканчиваются волокна интероцептивного пути, происходящие от нейронов вентролатеральных ядер таламуса, в которые информация поступает по ядерно-таламическому тракту. В проекционном центре висцероцепции анализируются главным образом болевые ощущения от внутренних органов и афферентные импульсы от гладкой мускулатуры.
  • 9. Проекционный центр вестибулярных функций, несомненно, имеет свое представительство в коре полушарий большого мозга, однако сведения о его локализации неоднозначны. Принято считать, что проекционный центр вестибулярных функций располагается в области средней и нижней височных извилин (поля 20, 21). Определенное отношение к вестибулярному анализатору имеют также прилежащие отделы теменной и лобной долей. В коре проекционного центра вестибулярных функций заканчиваются волокна, происходящие от нейронов срединных ядер таламуса. Поражения указанных корковых центров проявляются спонтанным головокружением, ощущением неустойчивости, чувством проваливания, ощущением движения окружающих предметов и деформации их контуров.

Завершая рассмотрение проекционных центров, следует отметить, что корковые анализаторы общей чувствительности получают афферентную информацию с противоположной стороны тела, поэтому поражение центров сопровождается расстройствами определенных видов чувствительности только на противоположной стороне тела. Корковые анализаторы специальных видов чувствительности (слуховой, зрительной, обонятельной, вкусовой, вестибулярной) связаны с рецепторами соответствующих органов своей и противоположной сторон, поэтому полное выпадение функций данных анализаторов наблюдается только при поражении соответствующих зон коры полушарий большого мозга с обеих сторон.

Ассоциативные нервные центры. Эти центры формируются позже, чем проекционные, причем сроки кортикализации, т.е. созревания коры головного мозга, в данных центрах неодинаковы. Ассоциативные центры отвечают за мыслительные процессы, память и реализацию словесной функции.

  • 1. Ассоциативный центр "стереогнозии ", или ядро кожного анализатора (центр узнавания предметов на ощупь). Этот центр располагается в верхней теменной дольке (поле 7). Он двусторонний: в правом полушарии – для левой кисти, в левом – для правой. Центр "стереогнозии" связан с проекционным центром общей чувствительности (постцентральная извилина), из которого нервные волокна проводят импульсы болевой, температурной, тактильной и проприоцептивной чувствительности. Поступающие импульсы в ассоциативном корковом центре анализируются и синтезируются, в результате чего происходит узнавание ранее встречавшихся предметов. На протяжении всей жизни центр "стереогнозии" постоянно развивается и совершенствуется. При поражении верхней теменной дольки больные теряют способность с закрытыми глазами создавать общее целостное представление о предмете, т.е. не могут узнать этот предмет на ощупь. Отдельные свойства предметов, такие как форма, объем, температура, плотность, масса, определяются правильно.
  • 2. Ассоциативный центр "праксии", или анализатор целенаправленных привычных движений. Данный центр располагается в нижней теменной дольке в коре надкраевой извилины (поле 40), у правшей – в левом полушарии большого мозга, у левшей – в правом. У некоторых людей центр "праксии" формируется в обоих полушариях, такие люди в одинаковой мере владеют правой и левой руками и называются амбидекстрами.

Центр "праксии" развивается в результате многократного повторения сложных целенаправленных действий. В результате закрепления временных связей формируются привычные навыки, например работа на пишущей машинке, игра на рояле, выполнение хирургических манипуляций и т.д. По мере накопления жизненного опыта центр праксии постоянно совершенствуется. Кора в области надкраевой извилины имеет связи с задней и передней центральными извилинами.

После осуществления синтетической и аналитической деятельности из центра "праксии" информация поступает в прецентральную извилину к пирамидным нейронам, откуда по корково-спинномозговому пути достигает двигательных ядер передних рогов спинного мозга.

3. Ассоциативный центр зрения, или анализатор зрительной памяти, располагается на верхнелатеральной поверхности затылочной доли (поля 18–19), у правшей – в левом полушарии, у левшей – в правом. В нем обеспечивается запоминание предметов по их форме, внешнему виду, цвету. Считают, что нейроны поля 18 обеспечивают зрительную память, а нейроны поля 19 – ориентацию в непривычной обстановке. Поля 18 и 19 имеют многочисленные ассоциативные связи с другими корковыми центрами, благодаря чему происходит интегративное зрительное восприятие.

При поражении центра зрительной памяти развивается зрительная агнозия. Чаще наблюдается частичная агнозия (нс узнает знакомых, свой дом, себя в зеркале). При поражении поля 19 отмечается искаженное восприятие предметов, больной не узнает знакомых предметов, но он их видит, обходит препятствия.

Нервной системе человека присущи специфические центры. Это центры второй сигнальной системы, обеспечивающие способность общения между людьми посредством членораздельной человеческой речи. Человеческая речь может воспроизводиться в виде исполнения членораздельных звуков ("артикуляция") и изображения письменных знаков ("графика"). Соответственно в коре головного мозга формируются ассоциативные речевые центры – акустический и оптический центры речи, центр артикуляции и графический центр речи. Названные ассоциативные речевые центры закладываются вблизи соответствующих проекционных центров. Они развиваются в определенной последовательности, начиная с первых месяцев после рождения, и могут совершенствоваться до глубокой старости. Рассмотрим ассоциативные речевые центры в порядке их формирования в головном мозге.

4. Ассоциативный центр слуха, или акустический центр речи (центр Вернике), расположен в коре задней трети верхней височной извилины. Здесь заканчиваются нервные волокна, происходящие от нейронов проекционного центра слуха (средняя треть верхней височной извилины). Ассоциативный центр слуха начинает формироваться на втором-третьем месяце после рождения. По мере формирования центра ребенок начинает различать среди окружающих звуков членораздельную речь, вначале отдельные слова, а затем словосочетания и сложные предложения.

При поражении центра Вернике у больных развивается сенсорная афазия. Она проявляется в виде утраты способности понимать свою и чужую речь, хотя больной хорошо слышит, реагирует на звуки, по ему кажется, что окружающие разговаривают на незнакомом ему языке. Отсутствие слухового контроля за собственной речью приводит к нарушению построения предложений, речь становится непонятной, насыщенной бессмысленными словами и звуками. При поражении центра Вернике, поскольку он имеет прямое отношение к речеобразованию, страдает не только понимание слов, но и их произношение.

5. Ассоциативный двигательный центр речи (речедвигательный), или центр артикуляции речи (центр Брока), расположен в коре задней трети нижней лобной извилины (поле 44) в непосредственной близости от проекционного центра двигательных функций (предцентральная извилина). Речедвигательный центр начинает формироваться на третьем месяце после рождения. Он односторонний – у правшей он развивается в левом полушарии, у левшей – в правом. Информация из речедвигательного центра поступает в предцентральную извилину и далее по корково-ядерному пути – к мышцам языка, гортани, глотки, мышцам головы и шеи.

При поражении речедвигательного центра возникает моторная афазия (утрата речи). При частичном поражении речь может быть замедлена, затруднена, скандирована, бессвязна, нередко характеризуется лишь отдельными звуками. Речь окружающих больные понимают.

6. Ассоциативный оптический центр речи, или зрительный анализатор письменной речи (центр лексии, или центр Дежерина), находится в угловой извилине (поле 39). К нейронам оптического центра речи поступают зрительные импульсы от нейронов проекционного центра зрения (поля 17). В центре "лексии" происходит анализ зрительной информации о буквах, цифрах, знаках, буквенном составе слов и понимании их смысла. Центр формируется с трехлетнего возраста, когда ребенок начинает узнавать буквы, цифры и оценивать их звуковое значение.

При поражении центра "лексии" наступает алексия (расстройство чтения). Больной видит буквы, но не понимает их смысла и, следовательно, не может прочесть текст.

7. Ассоциативный центр письменных знаков, или двигательный анализатор письменных знаков (центр графин), располагается в заднем отделе средней лобной извилины (поле 8) рядом с предцентральной извилиной. Центр "графин" начинает формироваться на пятом-шестом году жизни. В этот центр поступает информация из центра "праксии", предназначенная для обеспечения тонких, точных движений руки, необходимых для написания букв, цифр, для рисования. От нейронов центра "графин" аксоны направляются в среднюю часть предцентральной извилины. После переключения информация по корково-спинномозговому пути направляется к мышцам верхней конечности. При поражении центра "графин" теряется способность написания отдельных букв, возникает "аграфия".

Таким образом, речевые центры имеют одностороннюю локализацию в коре полушарий большого мозга. У правшей они располагаются в левом полушарии, у левшей – в правом. Следует отметить, что ассоциативные речевые центры развиваются на протяжении всей жизни.

8. Ассоциативный центр сочетанного поворота головы и глаз (кортикальный центр взора) располагается в средней лобной извилине (поле 9) кпереди от двигательного анализатора письменных знаков (центр графин). Он осуществляет регуляцию сочетанного поворота головы и глаз в противоположную сторону за счет импульсов, поступающих в проекционный центр двигательных функций (предцентральная извилина) от проприоцепторов мышц глазных яблок. Кроме того, в этот центр поступают импульсы от проекционного центра зрения (кора в области шпорной борозды – поле 17), происходящие от нейронов сетчатки глаза.

Дальнейшее наращивание количества и качества моторной активности ребенка связано с завершением первичного становления нейронного субстрата в составе кинестетического анализатора, совершенствованием внутрикорковых, корково-подкорковых проводящих путей, функциональных связей между двигательными, ассоциативными областями коры большого мозга, а также подкорковыми структурами. Оптимальный режим работы двигательного аппарата у человека устанавливается к 20-25 годам жизни.

5.2. ФИЗИОЛОГИЯ СПИННОГО МОЗГА

5.2.1. Структурно-функциональная характеристика

А. Сегменты. Спинной мозг представляет собой тяж длиной около 45 см у мужчин и около 42 см у женщин, имеет сегментарное строение (31-33 сегмента); каждый его участок связан с определенной частью тела. Спинной мозг включает пять отделов:

шейный (CI-CVIII), грудной (ThI-ThXII), поясничный (LI-LV), крестцовый (SI-SV) и копчиковый (COI-СOIII).

В процессе эволюции сформировалось два утолщения - шейное (сегменты, иннервирующие верхние конечности) и пояснично-крестцовое (сегменты, иннервирующие нижние конечности) как результат повышенной нагрузки на эти отделы спинного мозга. У некоторых видов животных подобных утолщений нет, например у змеи, которая передвигается благодаря равномерному участию в процессе движения всей мускулатуры тела. Тренировка любого органа обеспечивает прогрессивное его развитие не тольков фило-, но и в онтогенезе, при этом, естественно, совершенствуется и функция. Орган, не получающий достаточной нагрузки, постепенно атрофируется. Соматические нейроны в указанных утолщениях спинного мозга наиболее крупные, их больше, в каждом корешке этих сегментов содержится больше нервных волокон, нежели в других корешках, они отличаются наибольшей толщиной.

Б. Нейроны спинного мозга. Общее количество нейронов - около 13 млн. (3% мотонейронов, 97% вставочных нейронов, относящихся также к вегетативной нервной системе). Их целесообразно классифицировать по нескольким признакам:

По отделу нервной системы - нейроны соматической и вегетативной нервной системы;

По назначению, т.е. по направлению информации, - эфферентные, афферентные, вставочные;

По влиянию - возбуждающие и тормозные.

Эфферентные нейроны спинного мозга, относящиеся к соматической нервной системе, являются эффекторными, поскольку они иннервируют непосредственно рабочие органы - эффекторы (скелетные мышцы), их называют мотонейронами. Различают α- и γ-мотонейроны. α-Мотонейроны иннервируют экстрафузальные мышечные волокна (скелетная мускулатура), их аксоны характеризуются высокой скоростью проведения возбуждения -70-1 20 м/с. α -Мотонейроны делят на две подгруппы: α 1 - быстрые, иннервирующие белые мышечные волокна, их лабильность около 30 имп/с, и 02 - медленные, иннервирующие красные мышечные волокна, их лабильность составляет 10-15 имп/с. Низкая лабильность α -мотонейронов объясняется длительной следовой гиперполяризацией, сопровождающей ПД. На одном α -мотонейроне насчитывается до 20 000 синапсов: от кожных рецепторов, проприорецепторов и нисходящих путей вышележащих отделов ЦНС. γ-Мотонейроны рассеяны среди α -мотонейронов, их активность регулируется нейронами вышележащих отделов ЦНС, они иннервируют интрафузальные мышечные волокна мышечного веретена (мышечного рецептора). При изменении сократительной деятельности интрафузальных волокон под влиянием γ- Мотонейронов изменяется активность мышечных рецепторов. Импульсация от мышечных рецепторов активирует α -мотонейроны этой же мышцы и тормозит α -мотонейроны мышцы-антагониста, регулируя тем самым тонус скелетных мышц и двигательные реакции. Эти нейроны обладают высокой лабильностью -до 200 имп/с, но их аксонам свойственна более низкая скорость проведения возбуждения - 10-40 м/с.

Афферентные нейроны соматической нервной системы локализуются в спинальных ганглиях и ганглиях черепных нервов. Их отростки, проводящие афферентную импульсацию от мышечных, сухожильных и кожных рецепторов, вступают в соответствующие сегменты спинного мозга и образуют синаптические контакты либо непосредственно на α -мотонейронах (возбуждающие синапсы), либо на вставочных нейронах, которые могут быть возбуждающими и тормозными.

Вставочные (промежуточные) нейроны устанавливают связь с мотонейронами спинного мозга, с чувствительными нейронами.

Они также обеспечивают связь спинного мозга с ядрами ствола мозга, а через них - с корой большого мозга. Они могут быть как возбуждающими, так и тормозными, им присуща высокая лабильность - до 1000 имп/с.

Ассоциативные нейроны образуют собственный аппарат спинного мозга, устанавливающий связь между сегментами и внутри сегментов. Ассоциативный аппарат спинного мозга участвует в координации позы, тонуса мышц, движений конечностей и туловища.

Ретикулярная формация спинного мозга состоит из тонких перекладин серого вещества, пересекающихся в различных направлениях, ее нейроны имеют многочисленные отростки. Ретикулярная формация обнаруживается на уровне шейных сегментов между передними и задними рогами, а на уровне верхнегрудных сегментов - между боковыми и задними рогами в белом веществе, примыкающем к серому.

Нейроны вегетативной нервной системы являются также вставочными; нейроны симпатической нервной системы расположены в боковых рогах грудного, поясничного и частично шейного отделов спинного мозга (CVIII-LII) и являются фоново-активными, частота их разрядов - 3-5 имп/с. Нейроны парасимпатического отдела вегетативной нервной системы локализуются в сакральном отделе спинного мозга (82-84) и также фоново-активны.

В. Совокупность нейронов образует различные нервные центры. В спинном мозге находятся центры регуляции большинства внутренних органов и скелетной мускулатуры. Различные центры симпатического отдела вегетативной нервной системы локализованы в таких сегментах, как центр зрачкового рефлекса – CVIII-TII, регуляции деятельности сердца - ThI-ThV, слюноотделения - ThII-ThIV, регуляции функции почек – ThV-LIII. Сегментарно расположены центры, регулирующие функции потовых желез и сосудов, гладких мышц внутренних органов, центры пиломоторных рефлексов. Парасимпатическую иннервацию получают из спинного мозга (SII-SIV) все органы малого таза: мочевой пузырь, часть толстой кишки ниже ее левого изгиба, половые органы. У мужчин парасимпатическая иннервация обеспечивает рефлекторный компонент эрекции, у женщин - сосудистые реакции клитора, влагалища.

Центры управления скелетной мускулатурой находятся во всех отделах спинного мозга и иннервируют по сегментарному принципу скелетную мускулатуру шеи (CI-CIV), диафрагмы (СIII-CV), верхних конечностей (CV-ThII), туловища (ThIII-LI) и нижних конечностей (LII-SV).

Московский гуманитарно-экономический институт

Тверской филиал

Кафедра прикладной психологии

Реферат по дисциплине

«Физиология высшей нервной деятельности и сенсорных систем»

Тема: «Функциональная организация мозга».


Введение

Заключение

Список литературы


Введение

Открытие И.П. Павловым анализаторов и создание учения об условных рефлексах, в основе которого лежал объективный анализ динамики нервных процессов, послужило основой для развития современных материалистических представлений о динамической локализации мозговых функций - целостном и одновременно дифференцированном вовлечении мозга в любую из форм его активности.

Предложенный И.П. Павловым объективный условно рефлекторный метод исследования позволил наиболее адекватно подойти к экспериментальному решению проблемы функциональной организации мозга. И.П. Павлов развил и экспериментально обосновал представления об анализаторных системах, где каждый анализатор есть определенная анатомически локализованная структура от периферических рецепторных образований до проекционных зон коры головного мозга. Он предположил, что кроме локальных проекционных зон коры, выступающих в качестве «ядра коркового конца анализатора» (или проекционных зон коры), существуют периферические зоны представительства каждого анализатора, так называемые «зоны рассеянных элементов». В силу такой структурной организации все анализаторы, включая и двигательный анализатор, своими периферическими (корковыми) зонами перекрываются и образуют вторичные проекционные зоны коры, которые И.П. Павлов уже тогда рассматривал как «ассоциативный центры» мозга, составляющие основу для динамического взаимодействия всех анализаторных систем.

С позиций системной организации функций в деятельности мозга выделяют различные функциональные системы и подсистемы. Классический вариант интегративной деятельности мозга может быть представлен в виде взаимодействия трех основных функциональных блоков:

1) блок приема и переработки сенсорной информации - сенсорные системы (анализаторы);

2) блок модуляции, активации нервной системы - модулирующие системы (лимбико-ретикулярные системы) мозга;

3) блок программирования, запуска и контроля поведенческих актов - моторные системы (двигательный анализатор).


1. Три основных функциональных блока мозга

1.1 Блок приема и переработки сенсорной информации

Первый функциональный блок составляют анализаторы, или сенсорные системы. Анализаторы выполняют функцию приема и переработки сигналов внешней и внутренней среды организма. Каждый анализатор настроен на определенную модальность сигнала и обеспечивает описание всей совокупности признаков воспринимаемых раздражителей.

Анализатор - это многоуровневая система с иерархическим принципом ее конструкции. Основанием анализатора служит рецепторная поверхность, а вершиной - проекционные зоны коры. Каждый уровень этой морфологически упорядоченно организованной конструкции представляет собой совокупность клеток, аксоны которых идут на следующий уровень (исключение составляет верхний уровень, аксоны которого выходят за пределы данного анализатора). Взаимоотношения между последовательными уровнями анализаторов построены по принципу «дивергенции - конвергенции». Чем выше нейронный уровень анализаторной системы, тем большее число нейронов он включает. На всех уровнях анализатора сохраняется принцип топической проекции рецепторов. Принцип многократной рецептотопической проекции способствует осуществлению множественной и параллельной переработки (анализу и синтезу) рецепторных потенциалов («узоров возбуждений»), возникающих под действием раздражителей.

Нейрон, стоящий на выходе рецептивного поля, может выделять один признак раздражителя (простые детекторы) или комплекс его свойств (сложные детекторы). Детекторные свойства нейрона обусловливаются структурной организацией его рецептивного поля. Нейроны-детекторы более высокого порядка образуются в результате конвергенции нейронов-детекторов низшего (более элементарного) уровня. Нейроны-детекторы сложных свойств формируют детекторы «сверхсложных» комплексов. Высший уровень иерархической организации детекторов достигается в проекционных зонах и ассоциативных областях коры мозга.

Проекционные зоны анализаторных систем занимают наружную (конвекситальную) поверхность новой коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел этого функционального блока включается также представительство вкусовой, обонятельной, висцеральной чувствительности.

Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Нейроны зрительных аппаратов коры реагируют только на узкоспециальные свойства зрительных раздражителей (оттенки цвета, характер линий, направление движения). Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей.

Вторичные проекционные зоны коры располагаются вокруг первичных зон, как бы надстраиваясь над ними. В этих зонах 4-й афферентный слой уступает ведущее место 2-му и 3-му слоям клеток. Для этих нейронов характерно детектирование сложных признаков раздражителей, однако при этом сохраняется модальная специфичность, соответствующая нейронам первичных зон. Поэтому предполагается, что усложнение детекторных селективных свойств нейронов вторичных зон может происходить путем конвергенции на них нейронов первичных зон. В первичной зрительной коре (17-е поле Бродмана) содержатся в основном нейроны-детекторы простых признаков предметного зрения (детекторы ориентации линий, полосы, контраста и т. п.), а во вторичных зонах (18-е и 19-е поля Бродмана) появляются детекторы более сложных элементов контура: края, ограниченной длины линий, углов с различной ориентацией и др. Первичные (проекционные) зоны слуховой (височной) коры представлены 41-м полем Бродмана (рис. 1), нейроны которого модально специфичны и реагируют на различные свойства звуковых раздражителей. Как и первичное зрительное поле, эти первичные отделы слуховой коры имеют четкую рецептотопию. Над аппаратами первичной слуховой коры надстроены вторичные зоны слуховой коры, расположенные во внешних отделах височной области (22-е и частично 21-е поля Бродмана). Они также состоят преимущественно из мощно развитого 2-го и 3-го слоя клеток, реагирующих избирательно одновременно на несколько частот и интенсивностей: звукового раздражителя.

Рис. 1. Карта цитоархитектонических полей коры головного мозга. Конвекситальная поверхность коры больших полушарий: а - первичные поля; б - вторичные поля; в - третичные поля

Наконец, тот же принцип функциональной организации сохраняется и в общечувствительной (теменной) коре. Основой и здесь являются первичные или проекционные зоны (3-, 1- и 2-е поля Бродмана), толща которых также преимущественно состоит из обладающих модальной специфичностью нейронов 4-го слоя, а топография отличается четкой соматотопической проекцией отдельных сегментов тела. Вследствие чего раздражение верхних участков этой зоны вызывает появление кожных ощущений в нижних конечностях, средних участков - в верхних конечностях контрлатеральной стороны, а раздражение пунктов нижнего пояса этой зоны - соответствующие ощущения в контрлатеральных отделах лица, губ и языка. Над первичными зонами располагаются вторичные зоны общечувствительной (теменной) коры (5-е и частично 40-е поле Бродмана), состоящие преимущественно тоже из нейронов 2-го и 3-го слоев, и их раздражение приводит к возникновению более комплексных форм кожной и кинестетической чувствительности (см. рис. 1).

Таким образом, основные, модально-специфические зоны анализаторов мозга построены по единому принципу иерархической структурной и функциональной организации. Первичные и вторичные зоны, согласно И.П. Павлову, составляют центральную часть, или ядро, анализатора в коре, нейроны которого характеризуются избирательной настройкой на определенный набор параметров раздражителя и обеспечивают механизмы тонкого анализа и дифференцировки раздражителей. Взаимодействие первичных и вторичных зон носит сложный, неоднозначный характер и в условиях нормальной деятельности обусловливает согласованное содружество процессов возбуждения и торможения, которое закрепляет макро- и микроструктуру нервной сети, занятой анализом афферентного потока в первичных проекционных сенсорных полях. Это создает основу для динамического межанализаторного взаимодействия, осуществляемого в ассоциативных зонах коры.

Ассоциативные области (третичные зоны) коры являются новым уровнем интеграции: они занимают 2-й и 3-й клеточные (ассоциативные) слои коры, на которых протекает встреча мощных афферентных потоков, как одномодальных, разномодальных, так и неспецифических. Подавляющее большинство ассоциативных нейронов отвечает на обобщенные признаки стимулов - на количество элементов, пространственное положение, отношения между элементами и пр.

Конвергенция разномодальной информации необходима для целостного восприятия, для формирования «сенсорной модели мира», которая возникает в результате сенсорного обучения.

Ассоциативные зоны расположены на границе затылочной, височной и заднетеменной коры. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки избирательного различения воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации - для оперирования значениями слов и использования их для отвлеченного мышления.

Клинические наблюдения различных очаговых поражений третичных зон мозга человека накопили большой материал о взаимосвязи ассоциативных областей с различными функциональными расстройствами. Известно, что поражения лобно-височно-теменной области, так называемых речевых зон (имеется в виду левое полушарие), связаны с возникновением афазии (расстройства речи). При поражении нижневисочной области наблюдают предметную агнозию (нарушение процесса узнавания), теменных областей или угловой извилины теменной доли - развитие оптико-пространетвенной агнозии, при поражении левой височной доли обнаруживается цветовая агнозия и т. д. Следует отметить, что локальные поражения ассоциативных зон коры могут быть связаны как с относительно элементарными сенсорными расстройствами, так и с нарушениями сложных форм восприятия.

1.2 Блок модуляции, активации нервной системы

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований, оптимизирует уровень бодрствования в отношении выполняемой деятельности и обусловливает адекватный выбор поведения в соответствии с актуализированной потребностью. Только в условиях оптимального бодрствования человек может наилучшим образом принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать деятельность, осуществлять контроль над ней.

В условиях оптимальной возбудимости коры нервные процессы характеризуются известной концентрированностью, уравновешенностью возбуждения и торможения, способностью к дифференцировке и, наконец, высокой подвижностью нервных процессов, которые обусловливают протекание каждой организованной целенаправленности деятельности.

Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга. Ее часто называют лимбико-ретикулярный комплекс или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифическая система мозга с ее активирующими и инактивирующими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, синее пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

Важнейшей частью модулирующего блока мозга является активирующая ретикулярная формация. Филогенетически ретикулярная формация мозга представляет наиболее древнее морфологическое образование. В ретикулярной формации выделяют более или менее компактные и ограниченные клеточные скопления - ядра, отличающиеся различными морфологическими особенностями. В связи с этим одни авторы рассматривают ретикулярную формацию как диффузное вытянутое в длину единое образование, другие считают ее комплексом, состоящим из многих дифференцированных ядер с различной структурой и функциями. Латерально (с боков) ретикулярная формация окружена сенсорными путями. Таким образом, волокна ретикулярной формации окружены слоем сенсорных путей, которые к ней образуют множество коллатералей.

Функциональное назначение ретикулярной формации долго оставалось неизвестным. Электрофизиологические исследования выявили исключительную роль ретикулярной формации в интегративной деятельности мозга. Это открытие было сделано в 1949 г. Г. Мэгуном и Г. Моруцци. Путем стимуляции через электроды, вживленные в стволовой отдел мозга (на уровне среднего мозга), им удалось получить реакцию пробуждения спящего животного. Эту стволовую систему мозга Г. Мэгун назвал восходящей активирующей системой мозга.

Волокна ретикулярной формации, направляясь вверх, образуют модулирующие «входы» (как правило, аксодендритные синапсы) в выше расположенных мозговых образованиях, включая старую и новую кору. От старой и новой коры берут начало нисходящие волокна, которые идут в обратном направлении к структурам гипоталамуса, среднего мозга и к более низким уровням мозгового ствола. Через нисходящие системы связей все нижележащие образования оказываются под управлением и контролем тех программ, которые возникают в коре головного мозга и для выполнения которых требуется модуляция активности и модификация состояний бодрствования. Таким образом, блок активации с его восходящими и нисходящими влияниями работает (по принципу обратной связи) как единый саморегулирующий аппарат, который обеспечивает изменение тонуса коры, и вместе с тем сам находится под его контролем. Этот аппарат используется для пластичного приспособления организма к условиям среды. Он содержит в своей основе по крайней мере два источника активации: внутренний и внешний. Первый связан с обменными процессами, обеспечивающими внутреннее равновесие организма, второй - с воздействием внешней среды. Первым источником активации является внутренняя активность самого организма, или потребности. Любые отклонения от жизненно важных «констант» в результате изменения нервных или гуморальных влияний или вследствие избирательного возбуждения различных отделов мозга приводят к выборочному «включению» определенных органов и процессов, совокупная работа которых обеспечивает достижение оптимального состояния для данного вида деятельности организма.

Наиболее простые формы внутренней активности связаны с дыхательными и пищеварительными процессами, процессами внутренней секреции и другими, включенными в гомеостатический механизм саморегуляции, который устраняет нарушение во внутренней среде организма за счет своих резервов. Более сложные формы этого вида активации организованы в структуру врожденного поведения, направленного на удовлетворение определенной потребности. Естественно, для того чтобы обеспечить механизм инстинктивной регуляции поведения, необходима весьма избирательная и специфическая активация. Такая специфическая активация может быть функцией лимбической системы мозга, в которой важная роль принадлежит гипоталамусу.

Гипоталамус - часть промежуточного мозга, содержит десятки высоко дифференцированных ядер, обладающих обширной и разносторонней системой связей. Гипоталамус координирует внутренние потребности организма с его внешним поведением, направленным на достижение приспособительного эффекта. Гипоталамус входит в состав потребностно-мотивационной системы, являясь ее главной исполнительной структурой. При этом он не просто участвует в регуляции отдельных жизненно важных функций (голода, жажды, полового влечения, активной и пассивной обороны), а осуществляет их объединение в сложные комплексы или системы. В зависимости от характера нервной и гуморальной сигнализации, собирающейся в гипоталамусе, в нем или накапливается, или тормозится мотивационное возбуждение, определяющее внешнее поведение.

Второй источник активации связан с воздействием раздражителей внешней среды. Ограничение контакта с внешней средой приводит к значительному снижению тонуса (возбудимости) коры мозга. В условиях резкого ограничения сенсорной информации у человека могут возникать галлюцинации, которые в какой-то мере компенсируют дефицит сенсорного возбуждения.

Часть непрерывного потока сенсорных сигналов, поставляемых в кору специфическими (анализаторными) системами, по коллатералям поступает в ретикулярную формацию. После многократных переключений в ее синапсах афферентное возбуждение достигает высших отделов головного мозга. Эти так называемые неспецифические активирующие влияния служат необходимым условием для поддержания бодрствования и осуществления любых поведенческих реакций. Помимо этого неспецифическая активация является важным условием для формирования селективных свойств нейронов коры в процессе онтогенетического созревания и обучения.

В аппарате восходящей ретикулярной формации сформировался механизм преобразования сенсорной информации в две формы активации: тоническую (генерализованную) и фазическую (локальную). Тоническая форма активации связана с функцией нижних стволовых отделов ретикулярной формации. Она генерализованно, диффузно поддерживает определенный уровень возбудимости в коре и подкорковых образованиях. Фазическая форма активации связана с верхними отделами ствола мозга, и прежде всего с неспецифической таламической системой, которая локально и избирательно распределяет воздействия восходящей активации на подкорковые образования, старую и новую кору.

Тоническая активация облегчается притоком возбуждений из различных органов чувств. «Экстренное» появление или исчезновение какого-либо раздражителя во внешней среде вызывает ориентировочный рефлекс и реакцию активации (экстренная мобилизация организма). Это поликомпонентная реакция, она связана с работой механизмов тонической и фазической активации ретикулярной формации (среднего мозга и неспецифических ядер таламуса). Кроме того, ориентировочный рефлекс связан с активирующей и тормозной функцией нейронов гиппокампа и хвостатого ядра, которые являются важным аппаратом регуляции тонических состояний коры мозга.

Кора головного мозга наряду со специфическим функциональным вкладом оказывает активирующие и тормозные влияния на нижележащие нервные образования. Корковые влияния, поступающие по нисходящим волокнам, представляют достаточно дифференцированную организацию и могут рассматриваться в качестве дополнительного третьего источника активации. Нисходящие волокна активирующей (и тормозящей) ретикулярной системы имеют достаточно дифференцированную корковую организацию; если связанные со специфическими путями пучки волокон (повышающих или понижающих тонус сенсорных или двигательных аппаратов) исходят из первичных (и частично из вторичных) зон коры, то волокна, опосредствующие более общие активирующие влияния на ретикулярную формацию ствола, исходят прежде всего из лобных отделов коры. Нисходящие волокна, идущие преимущественно от префронтальной (орбитальной и медиальной) коры, адресуются к ядрам зрительного бугра и нижележащих стволовых образований и являются тем аппаратом, посредством которого высшие отделы мозговой коры, непосредственно участвующие в формировании намерений и планов, управляют работой нижележащих аппаратов ретикулярной формации таламуса и ствола, тем самым модулируя их работу и обеспечивая наиболее сложные формы сознательной деятельности.

1.3 Блок программирования, запуска и контроля поведенческих актов

Прием, переработка и хранение внешней информации составляют только одну сторону психической жизни человека. Ее другую сторону составляет организация активной сознательной психической деятельности. С этой задачей и связан третий из основных функциональных блоков мозга - блок программирования, регуляции и контроля за протекающей деятельностью.

Аппараты третьего функционального блока мозга расположены в передних отделах больших полушарий, спереди от центральной извилины (см. рис. 1). Его основной отличительной чертой является то, что он не содержит модально-специфических зон, представляющих отдельные анализаторы, а состоит целиком из аппаратов эфферентного (двигательного) типа, однако сам находится под постоянным притоком информации из аппаратов афферентного (сенсорного) блока. Следующая важнейшая черта, отличающая работу третьего функционального блока от афферентного, состоит в том, что процессы здесь идут в нисходящем направлении, начинаясь с наиболее высоких - третичных и вторичных зон коры. Здесь в высших отделах интегративно-пускового блока формируются двигательные программы, а затем переходят к аппаратам низших моторных образований (первичным корковым зонам; стволовым и спинальным двигательным ядрам). Решающее значение в подготовке двигательной эфферентной импульсации имеют надстроенные над первичной моторной корой вторичные (премоторные отделы, 6-е и 8-е поля) и третичные зоны (префронтальные отделы лобной коры), или лобные доли (см. рис. 1).

Двигательная кора (первичная проекционная зона) занимает пространство ростральнее Роландовой борозды (4-е поле Бродмана). Она является выходными воротами интегративно-пусковой системы мозга, или функционального блока программирования, регуляции и контроля деятельности. Передняя центральная извилина является лишь первичной (проекционной) зоной, исполнительным аппаратом (выходными воротами) мозговой коры. Естественно, что состав двигательных импульсов, посылаемых на периферию, должен быть подготовлен, включен в определенные программы, и только после такой подготовки двигательная импульсная программа может обеспечить нужные целесообразные движения. Эта программа формируется как в аппарате передней центральной извилины, так и в аппаратах, надстроенных над ней.

Особенностью цитоархитектонической организации моторной коры является мощное развитие 5-го эфферентного слоя, который содержит гигантские пирамидные клетки Беца. Пирамидные нейроны расположены неравномерно, группами с вертикальными связями между нейронами II и IV слоев. Аксоны гигантских пирамид дают начало длинным нисходящим волокнам, составляющим значительную часть «главного» двигательного пути мозга - пирамидного тракта, оканчивающегося на моторных ядрах головного и спинного мозга, т. е. образуют кортикоспинальные пути. Пирамидная система тесно связана с экстрапирамидной системой. К последней относятся все образования головного мозга, имеющие отношение к управлению движениями и посылающие супраспинальные проекции вне кортикоспинальных путей.

Функциональная организация моторной коры имеет проекционный и топографический характер с четко выраженными признаками соматотопической проекции: в медиальных отделах поверхности коры берут начало волокна, управляющие мускулатурой нижних конечностей, нервные клетки срединных отделов поверхности коры посылают аксоны к спинальным механизмам верхних конечностей, от латеральных отделов нисходящие эфферентные волокна направляются к двигательным ядрам черепно-мозговых нервов ствола мозга и управляют мышцами гортани, рта, глаз и лица. По ходу следования все нисходящие волокна перекрещиваются и управляют мускулатурой противоположной стороны туловища. Органы, которые нуждаются в наиболее тонкой регуляции и выполняют дискретные движения, имеют в моторной зоне коры максимальное топическое представительство.

В отличие от человека у животных в зонах прецентральной извилины коры отмечается значительное перекрытие моторных и сенсорных зон, вследствие чего эта область называется сенсомоторной корой. Значительную часть афферентных входов гигантопирамидных клеток составляют волокна зрительного, слухового и других анализаторов. В связи с этим первичные зоны коры животных являются областью сенсомоторной интеграции. Модульная структура сенсомоторной коры является основательной предпосылкой для синхронной мультисенсорной интеграции и формирования эфферентного импульсного разряда. Предполагается, что в пределах передней центральной извилины аппаратом, участвующим в межнейронной интеграции, являются верхние слои коры, состоящие из дендритов пирамид и глиальных клеток. Известно, что отношение массы этого внеклеточного серого вещества к массе клеток передней центральной извилины резко возрастает по мере эволюции, так что величина его у человека вдвое больше, чем у высших обезьян, и почти в 5 раз больше, чем у низших обезьян.

Удаление прецентрального двигательного поля приводит к неодинаковым последствиям у животных с разной степенью развития полушарий. Обычно наблюдаются двигательные расстройства в виде пареза, спастичности мышц и ограничения двигательного репертуара. Удаление поля 4 приводит к некомпенсируемым нарушениям движений большого и других пальцев руки, к нарушению произвольных движений конечностей, гиподинамии. Удаление представительства руки вызывает устойчивое, длящееся до одного месяца спастическое сгибание пальцев и паралич руки. Отмечается общая слабость и наиболее яркий симптом - исчезновение выразительных и столь характерных для обезьян ориентировочно-исследовательских реакций. Полное иссечение поля 4 у человека делает невозможным сложные и тонкие движения на контрлатеральной стороне тела, при этом раздельные движения пальцев не восстанавливаются.

С помощью метода локальной электрической стимуляции было установлено точное представительство мышц тела и конечностей в коре человека и животных. Локальная стимуляция коры вызывает рефлексию отдельных мышц противоположной стороны тела. Дискретные движения с наименьшим порогом вызываются стимуляцией моторной коры (4-е поле). Эти движения обусловливаются активацией гигантских пирамидных клеток, которые отсутствуют в постцентральной области коры. Все это говорит о том, что моторная зона является лишь проекционной зоной, исполнительным аппаратом мозговой коры и она не может функционировать «самостоятельно». Решающее значение в подготовке двигательных программ для передачи их на гигантские пирамидные клетки имеют надстроенные над ней вторичные и третичные зоны коры.

Вторичные зоны двигательной коры или премоторные отделы лобной области морфологически сохраняют тот же принцип «вертикальной организации», который характерен для всякой двигательной коры, но отличается несравнимо большим развитием верхних клеточных слоев коры - малых пирамид. Премоторная кора подчиняется принципу убывающей специфичности, в ней отсутствует локальная соматотопическая проекция, а аксоны пирамидных клеток этой области образуют эфференты, переключающиеся на обширные подкорковые моторные образования. Раздражение 5-, 7- и 8-го полей премоторной области коры (см. рис. 1) вызывает не соматотопически ограниченные (локальные) вздрагивания отдельных мышц, а целые комплексы движений, имеющих системно организованный характер (баллистические движения глаз в определенную точку пространства, медленные прослеживающие движения глаз, поворот головы, туловища, направленные движения конечностей). Это указывает на то, что «командные» нейроны премоторной коры «организуют» отдельные мышечные сокращения в целостный двигательный акт.

Премоторные отделы коры представляют мощный аппарат мулътисенсорной конвергенции. Эти ассоциативные зоны снабжены богатой и разветвленной системой эфферентных путей как к корковым формациям рострального полюса больших полушарий, так и к подкорковым образованиям - специфическим, неспецифическим, ассоциативным ядрам таламуса, гипоталамуса, миндалине, ядрам экстрапирамидной системы, помимо этого они образуют связи со спинным мозгом через пирамидный тракт.

Наиболее важной частью третьего функционального блока мозга являются третичные зоны коры, которые занимают префронтальные или лобные отделы (см. рис. 1). Лобные отделы, по мнению А.Р. Лурии, представляют собой блок программирования намерений, оценки выполненных действий и коррекции допущенных ошибок, т.е. аппарат наиболее сложных форм регуляции целостного поведения.

Особенностью префронтальной области (ассоциативных полей) мозга является ее богатейшая система связей как с нижележащими подкорковыми образованиями мозга и соответствующими отделами ретикулярной формации, так и со всеми остальными отделами коры. Эти связи носят двусторонний, а нередко моносинаптический характер и делают префронтальные отделы коры образованиями, находящимися в самом выгодном положении как для приема и синтеза сложнейшей системы афферентаций, идущих от всех отделов мозга, так и для организации эфферентных импульсов, позволяющих оказывать регулирующие воздействия на все эти структуры.

Лобные доли коры целиком состоят из мелких, зернистых клеток, обладающих в основном короткими аксонами и разветвленными дендритами и таким образом несущих ассоциативные функции. Получая по восходящим пучкам связей от ретикулярной формации активирующие воздействия, они сами оказывают регулирующее влияние на нее. Они придают деятельности неспецифической активирующей системы дифференцированный характер, приводя состояние активности в соответствие с различными формами поведения. Как более поздняя онтогенетическая «надстройка», лобные доли осуществляют гораздо более универсальную функцию общей организации поведения и высших форм ассоциативной деятельности. Они становятся окончательно подготовленными к деятельности у ребенка лишь 4-7-летнего возраста, когда ассоциативные пути обеспечивают нарастающее в онтогенезе совершенствование механизмов сочетательной (условнорефлекторной) деятельности головного мозга, когда верхний продольный пучок нервных волокон устанавливает связь между новыми полями лобной, теменной, затылочной и височной областей коры. Созревание ассоциативных систем мозга отражается в постепенной нормализации различных физиологических показателей организма, динамических свойств нервных процессов, а также готовности к повышенной функциональной нагрузке ассоциативных систем.

Как указывал еще И.П. Павлов, лобные доли мозга животных, помимо двигательно-кинестетических функций, выполняют сложные процессы анализа и синтеза, обеспечивающие интеграцию высших функций, формирование сложнейших временных связей. У лобэктомированной собаки не отмечается нарушений в восприятии различных экстероцептивных сигналов и в реализации простых условных рефлексов, но исчезает способность последовательно совершать выработанные до операции двигательные навыки, нарушается целенаправленная деятельность. Поведение становится фрагментарным, возникают инертные стереотипные движения, нарушается память, пространственная ориентация, появляется гиперактивность.

Дальнейшие исследования позволили внести уточнения в анализ функций лобных долей мозга. Наиболее заметные изменения в поведении наступают после лобэктомии у антропоидов. Обезьяна, лишенная лобных долей, успешно осуществляет простые акты поведения, но не в состоянии дифференцировать сигналы, использующиеся в разных ситуациях (например, при последовательной смене стимулов), и, таким образом, не может выполнять программу поведения, требующую хранения следа раздражителя в памяти. Иными словами, нарушается выполнение различного рода отсроченных задач. Однако, по мнению К. Прибрама, разрушение лобных долей у шимпанзе ведет не столько к нарушению памяти, сколько к нарушению поведения в результате потери способности решения задач в связи с возникновением устойчивого ориентировочного рефлекса (неугасающей реакцией на всевозможные побочные раздражители). При этом животное не способно к состоянию «активного ожидания» и в условиях длительной паузы делает массу движений, не относя их к моменту ожидаемого раздражителя. Таким, образом, есть основания считать, что лобные доли являются одним из важнейших аппаратов, позволяющих животному осуществлять ориентировку не только на настоящий момент, но и на будущее.

Нейропсихологические данные (полученные в условиях клиники) позволили выделить ряд симптомов, связанных с локальными поражениями участков лобной коры, и уточнить, таким образом, специфику их участия. Повреждение премоторной области лобного отдела мозга приводит к нарушению контроля над двигательной сферой деятельности человека. Особенно тяжелые последствия наступают при поражении левого полушария, связанного с речевой функцией, в связи с этим страдает выполнение действий, вызванных словесными инструкциями, меняется уровень интеллектуальной деятельности. При повреждениях, захватывающих базальные (орбитальные) отделы любой области, которые тесно связаны с лимбическими образованиями мозга, наблюдаются симптомы, связанные непосредственно с высшим контролем внутренней мотивационной сферы организма.

Нейропсихологи и нейрофизиологи единодушно считают, что одной из наиболее существенных сторон лобного синдрома является расстройство способности к планированию адекватного поведения, учета эффекта совершаемых действий. Процессы программирования, регуляции и контроля сознательной деятельности в значительной степени зависят от префронтальных отделов. К. Прибрам считает, что лобные доли формируют набор нейронных программ, придающих индивидуальному опыту известную структуру, и строят «грамматику» поведения. По мнению А.Р. Лурии, именно лобные доли осуществляют экстренную активацию процессов, обусловливающих сложные формы сознательной деятельности (непосредственно связанной с речью).


2. Взаимодействие трех основных функциональных блоков мозга

Мы рассмотрели современные представления о трех основных функциональных блоках мозга и постарались показать роль каждого из них в организации сложной психической деятельности.

Было бы неправильным думать, что каждый из этих блоков может самостоятельно осуществлять ту или иную форму деятельности, считая, например, что второй функциональный блок полностью осуществляет функцию восприятия и мышления, а третий - функцию движения и построения действий.

Каждая форма сознательной деятельности всегда является сложной функциональной системой и осуществляется, опираясь на совместную работу всех трех блоков мозга, каждый из которых вносит свой вклад в осуществление психического процесса в целом.

Факты, которые хорошо установлены современной психологией, делают это положение бесспорным.

Уже давно прошло то время, когда психологи рассматривали психические функции как изолированные «способности», каждая из которых может быть локализована в определенном участке мозга. Отвергнута и другая концепция, согласно которой психические процессы представлялись по модели рефлекторной дуги, первая часть которой имела чисто афферентный характер и выполняла функции ощущения и восприятия, в то время как вторая - эффекторная - часть целиком осуществляла движения и действия.

Современные представления о строении психических процессов исходят из модели рефлекторного кольца или сложной саморегулирующейся системы, каждое звено которой включает как афферентные, так и эфферентные компоненты и которая в целом носит характер сложной и активной психической деятельности.

Рассмотрим это на двух примерах: восприятия и движения, или действия. Сделаем это лишь в самых общих чертах, поскольку подробный анализ структуры и мозговой организации этих процессов будет представлен в последней части этой книги.

Известно, что ощущение включает в себя двигательные компоненты, и современная психология рассматривает ощущение, и тем более восприятие, как рефлекторный акт, содержащий как афферентные, так и эфферентные звенья (А.Н. Леонтьев, 1959); чтобы убедиться в сложном активном характере ощущений, достаточно напомнить, что даже у животных они включают в свой состав процесс отбора биологически значимых признаков, а у человека - и активное кодирующее влияние языка (Брунер, 1957; A.А. Люблинская, 1969).

Еще более отчетливо активный характер процессов выступает в сложном предметном восприятии. Хорошо известно, что предметное восприятие носит не только полирецепторный характер, опираясь на совместную работу целой группы анализаторов, но всегда включает в свой состав активные двигательные компоненты. Решающую роль движений глаз в зрительном восприятии отмечал еще И.М. Сеченов (1874-1878), однако доказано это было лишь в последнее время. В целом ряде психофизиологических исследований было показано, что неподвижный глаз практически не может воспринимать изображение, состоящее из многих компонентов, и что сложное предметное восприятие предполагает активные, поисковые движения глаз, выделяющие нужные признаки (А.Л. Ярбус, 1965, 1967), и лишь постепенно, по мере развития принимает свернутый характер (А.В. Запорожец, 1967; B.П.Зинченко и др., 1962).

Все эти факты убеждают нас в том, что восприятие осуществляется при совместном участии всех тех функциональных блоков мозга, из которых первый обеспечивает нужный тонус коры, второй осуществляет анализ и синтез поступающей информации, а третий обеспечивает направленные поисковые движения, создавая тем самым активный характер воспринимающей деятельности.

Аналогичное можно сказать и о построении произвольного движения и действия.

Участие эфферентных механизмов в построении движения самоочевидно; однако еще Н.А. Бернштейн (1947) показал, что движение не может управляться одними эфферентными импульсами и что для его организованного протекания необходимы постоянные афферентные процессы, сигнализирующие о состоянии сочленений и мышц, положении сегментов движущегося аппарата и тех пространственных координатах, в которых движение протекает.

Таким образом, произвольное движение, и тем более предметное действие, опирается на совместную работу самых различных отделов мозга, и если аппараты первого блока обеспечивают нужный тонус мышц, без которого никакое координированное движение не было бы возможным, то аппараты второго блока дают возможность осуществить те афферентные синтезы, в системе которых протекает движение, а аппараты третьего блока обеспечивают подчинение движения и действия соответствующим намерениям, создают программы выполнения двигательных актов и обеспечивают ту регуляцию и контроль протекания движений, благодаря которым сохраняется его организованный, осмысленный характер.


Заключение

В данной работе были рассмотрены три основных функциональных блока коры головного мозга. Первым функциональным блоком коры головного мозга является блок приема, переработки и хранения сенсорной информации. Он расположен в задних отделах полушарий и включает в свой состав зрительные (затылочные), слуховые (височные) и общечувствительные (теменные) отделы коры головного мозга и соответствующие подкорковые структуры.

Аппараты этого (как и следующего) блока имеют иерархическое строение, распадаясь на первичные (проекционные) зоны, которые принимают информацию и дробят ее на мельчайшие составные части, вторичные (проекционно-ассоциативные) зоны, которые обеспечивают кодирование (синтез) этих составных частей и превращают соматотопическую проекцию в функциональную организацию, и третичные зоны (или зоны перекрытия), обеспечивающие совместную работу различных анализаторов и выработку надмодальных (символических) схем, лежащих в основе комплексных форм познавательной деятельности.

Указанные иерархически построенные зоны коры разбираемого блока работают по принципам убывающей модальной специфичности и возрастающей функциональной латерализации. Оба эти принципа и обеспечивают возможность наиболее сложных форм работы мозга, лежащих в основе наиболее высоких видов познавательной деятельности человека, генетически связанных с трудом, а структурно - с участием речи в организации психических процессов.

Второй функциональный блок головного мозга играет важную роль в регуляции состояний активности коры и уровня бодрствования. Этот блок построен по типу неспецифической нервной сети, которая осуществляет свою функцию путем постепенного, градуального изменения состояний и не имеет непосредственного отношения ни к приему и переработке поступающей извне информации, ни к выработке намерений, планов и программ поведения. Этим второй функциональный блок мозга, расположенный в основном в пределах мозгового ствола, образований межуточного мозга и медиальных отделов новой коры, существенно отличается от аппаратов первого функционального блока мозга, основная функция которого заключается в приеме, переработке и хранении внешней информации.

Третий функциональный блок мозга - блок программирования, регуляции и контроля за протекающей деятельностью.

Аппараты третьего функционального блока мозга расположены в передних отделах больших полушарий, спереди от центральной извилины. Он состоит целиком из аппаратов эфферентного (двигательного) типа, однако сам находится под постоянным притоком информации из аппаратов афферентного (сенсорного) блока. Следующая важнейшая черта, отличающая работу третьего функционального блока от афферентного, состоит в том, что процессы здесь идут в нисходящем направлении, начинаясь с наиболее высоких - третичных и вторичных зон коры. Здесь в высших отделах интегративно-пускового блока формируются двигательные программы, а затем переходят к аппаратам низших моторных образований (первичным корковым зонам; стволовым и спинальным двигательным ядрам).

Каждый из этих основных блоков имеет иерархическое строение и состоит по крайней мере из надстроенных друг над другом корковых зон трех типов: первичных (или проекционных), куда поступают импульсы с периферии или откуда направляются импульсы на периферию, вторичных (или проекционно-ассоциативных), где происходит переработка получаемой информации или подготовка соответствующих программ, и, наконец, третичных (или зон перекрытия), которые являются наиболее поздно развивающимися аппаратами больших полушарий и которые у человека обеспечивают наиболее сложные формы психической деятельности, требующие совместного участия многих зон мозговой коры.


Список литературы

1. Батуев А.С. Физиология высшей нервной деятельности и сенсорных систем: учебник. – СПб.: Питер, 2008.

2. Данилова Н.Н., Крылова А.Л. Физиология высшей нервной деятельности: учебник. –Ростов н / Д, 2001.

3. Лурия А.Р. Основы нейропсихологии. Учеб. пособие для студ. высш. учеб. заведений. – М.: Изд-во «Академия», 2003.

4. Симонов П.В. Лекции о работе головного мозга. Потребностно-информационная теория высшей нервной деятельности. – М.: Наука, 2001.

5. Смирнов В.М., Будылина С.М. Физиология сенсорных систем и высшая нервная деятельность. – М.: Академия, 2007.


Ассоциативные системы мозга, их роль в сенсорной функции мозга и программировании поведения.

Одним из основных атрибутов любого сложного целенаправленного движения является формирование предварительных программ.
Роль программы в структуре двигательного акта должна рассматриваться с учетом биологической мотивированности движения, его временных параметров, моторной дифференцированное™, степени сложности координационного соста¬ва и уровня его автоматизированное Стратегия и тактика движения. Биологическая мотивированность двигатель¬ного акта является основным побуждающим (инициальным) фактором для его реализации. Именно мотивации формируют целенаправленные движения, а сле¬довательно, определяют их общую стратегию. Значит, если в основе стратегии движения находится биологическая (или социальная) мотивация, то каждый конк¬ретный двигательный акт будет рассматриваться как шаг к удовлетворению этой мотивации, то есть будет решать какую-то промежуточную задачу или цель (рис. 104). Биологические мотивации могут приводить либо к запуску «запаян¬ных», то есть жестких, программ, устанавливать их комбинаторику, с чем мы встречаемся у беспозвоночных и низших позвоночных и именуем инстинктами или комплексами фиксированных действий, либо приводить к формированию новых сложных программ, определяя одновременно степень их лабильности. в тех случаях, когда действие полностью яв¬ляется автоматическим следствием стимула, невозможно говорить о мотивации. При этом между стимулом и ответом существуют фиксированные взаимоотноше- ния. Мотивация «ломает» эти фиксированные связи между стимулом и реакцией с помощью процесса обучения. Например, в отличие от многих инстинктив¬ных реакций, реакция нажатия на педаль может быть «отделена» от внутреннего состояния животного. Оперантпая ситуация, сигнал, реакция, подкрепление яв¬ляются полностью произвольными, не обладающими фиксированными связями друг с другом.

Участие ассоциативных систем мозга в организации движении. Роль внеш¬них факторов, сигналов из внешней среды и соответственно роль сенсорных и ас¬социативных систем мозга в формировании мотивированных движений весьма значительна. Специфичность участия таламопариеталыюй ассоциативной систе¬мы в организации движений определяется двумя моментами.

С одной стороны, она участвует в формировании интегральней схемы тела, все части которого соотнесены не только друг с другом, но и с вестибулярными и зри¬тельными сигналами.

С другой стороны, она участвует в регуляции внимания к текущим сигналам окружающей среды с учетом ориентации всего тела относительно этих сигналов.

Таламопариетальиая (как и нижневисочная) ассоциативная система активиру¬ется текущими сенсорными сигналами, то есть привязана в основном к настояще¬му моменту времени, и связана с анализом главным образом пространственных взаимоотношений разиомодальпых признаков.

Фронтальная ассоциативная система имеет реципрокпые отношения с двумя функциональными системами мозга:

1) темешю-височной, которая связана с обработкой и интеграцией полимодаль¬ной сенсорной информации;

2) телеицефалической лимбической системой, включающей лимбическую кору и связанные с ней подкорковые образования, особенно гипоталамус и районы среднего и промежуточного мозга.

Целенаправленное поведение определяется доминирующей мотивацией, побуж¬дающей организм к удовлетворению преобладающей потребности.

Адаптивный же характер поведения достигается с помощью множества услов¬ных рефлексов, которые обеспечивают приспособление организма к конкретной пространственно-временной ситуации. Неспецифическая направленность поис¬кового поведения определяется наличием гипоталамического очага стационарно¬го возбуждения, обладающего доминантными свойствами (инертность, высокая возбудимость, способность к суммации); поисковая же активность в конкретной ситуации определяется системой корковых условно-рефлекторных связей как ос¬новы прошлого жизненного опыта, который обеспечивает направленный поиск объекта удовлетворения потребности.

Высшие интегративпые (ассоциативные) системы мозга являются основными аппаратами управления пластичными формами поведения, которые обеспечива¬ются механизмами:

♦ селективной конвергенции биологически значимой информации;

♦ пластических перестроек под влиянием доминирующей мотивации;

♦ краткосрочного храпения интегральных образов и программы предстоящего поведенческого акта.

Степень развития ассоциативных систем мозга в эволюции млекопитающих коррелирует с совершенством апалнтико-сиптетической деятельности и органи¬зацией сложных форм поведения.

Способность формировать последовательность движений и предвидеть ее реа¬лизацию как самая сложная функция мозга достигает наибольшего развития у че¬ловека, обладающего свойствами речевого управления поведением.

Разные области коры подразделяются, в зависимости от выполняемой функции, на проекционные (соматосенсорная, зрительная, слуховая), моторные и ассоциативные (префронтальная, теменно-височно-затылочная, лимбическая) (Рис. 9.1). Cоматосенсорная кора занимает постцентральные извилины мозга, находящиеся непосредственно позади центральной борозды, а кпереди от этой борозды, т. е. в прецентральных извилинах, находится моторная кора (перед нею расположена премоторная область).

Первичная зрительная или стриарная кора занимает медиальную часть затылочных долей (поле 17 по Бродману), первичная слуховая кора расположена в глубине латеральной или сильвиевой борозды (поле 41). Информация от вестибулярных аппаратов, необходимая для поддержания равновесия, поступает в постцентральную извилину. Там же, в области представительства языка, перерабатываются сигналы от вкусовых рецепторов. К первичным проекционным областям примыкают вторичные, а всю остальную поверхность мозга представляет ассоциативная кора, занимающая большую часть его поверхности.

От находящихся на поверхности тела, а также в мышцах и сухожилиях окончаний чувствительных нейронов по параллельным проводящим путям к коре поступает информация о прикосновении и давлении на кожу, о действии температурных и болевых стимулов, об изменении длины и напряжения различных мышц. В каждом пункте переключения происходит переработка передаваемого сигнала, каждый такой информационный поток поступает к определённой области сенсорной коры, где из разрозненных характеристик стимула должен произойти синтез целостного ощущения. Где и как это происходит?

В 30-х годах ХХ столетия в экспериментах на обезьянах было показано (W. Marshall), что в коре мозга закономерно возникают потенциалы действия в связи с раздражением поверхности тела. Между разными частями тела и поверхностью мозговой коры обнаружилось соответствие, что позволило составить карту пространственного представительства тела в коре мозга.

В 1937 году нейрохирург Уайлдер Пенфилд (Penfield W.) вместе с коллегами прооперировал многих больных эпилепсией и, с целью обнаружения патологического очага возбуждения, вызывающего приступы эпилепсии, дозированным электрическим током раздражал поверхность мозга. Поскольку операции проводились под местной анестезией, больные сохраняли сознание и могли рассказывать о своих ощущениях, связанных с электрической стимуляцией коры. Раздражение разных участков постцентральных извилин мозга вызывала ощущение прикосновения к определённому месту на противоположной половине тела. Эта область получила название соматосенсорной коры или S 1. Обобщением исследований, выполненных в клинике Пенфилда, стала карта соматосенсорного представительства в коре – сенсорный гомункулус, т. е. человечек (Рис. 9.2).

Его пропорции не соответствуют пропорциям человеческого тела, поскольку руки, лицо, губы и язык представлены на большей площади коры, чем всё тело. Эта диспропорция отражает относительную плотность чувствительной иннервации: она значительно выше в тех частях тела, которые позволяют особенно тонко различать тактильные ощущения и очень небольшие изменения мышечной деятельности. Аналогичная схема двигательного гомункулуса была получена при сопоставлении сокращений различных мышц в ответ на электрическую стимуляцию определённых участков моторной коры контрлатерального, т. е. противоположного полушария в области прецентральной извилины (См. главу 10).

Первоначальная схема Пенфилда в дальнейшем была уточнена благодаря исследованиям коры с помощью точечных микроэлектродов, которые позволили регистрировать активность отдельных нейронов в зависимости от характера действующих на ограниченный участок поверхности тела стимулов. Эта техника позволила разделить всю соматосенсорную кору на четыре области (Рис. 9.3), занимающие, в соответствии с разделением коры по Бродману, поля 3а, 3б, 1 и 2. В поле 3а поступает информация от рецепторов мышц и суставов, в поле 3б – от поверхностных рецепторов кожи: эта информация содержит самые элементарные характеристики стимула. В поле 1 происходит дальнейшая переработка информации, поступившей от рецепторов кожи, а в поле 2 она комбинируется с той, которая содержит сведения о мышцах и суставах. Таким образом, если в полях 3а и 3б формируются элементарные представления о стимуле, то в полях 1 и 2 – комплексные.

Все четыре поля получают информацию от общей поверхности тела, но в каждом поле одно из ощущений доминирует над остальными: в поле 3а – это вход от рецепторов растяжения, в 3б – от поверхностных рецепторов кожи, в поле 2 – от рецепторов, реагирующих на сильное давление, а в поле 1 – от быстро адаптирующихся рецепторов кожи. В полях 3а и 3б нет клеток, воспринимающих информацию о направлении действия стимула и о его расположении. Такие нейроны содержатся в полях 1 и 2, и только с их участием удаётся определить трёхмерную форму предмета, т. е. сформировать пространственное ощущение, а также установить направление, в котором перемещается по коже раздражитель. От некоторых нейронов полей 3а и 3б аксоны направляются к полям 1 и 2, где конвергируют на одних и тех же клетках, что позволяет последним реагировать на различные комплексные признаки раздражителя, например, на его контур.

Благодаря конвергенции различных афферентных входов к нейронам 1 и 2 ареалов, их рецептивные поля оказываются больше, чем у нейронов 3а и 3б. Так, например, если рецептивные поля 3а и 3б обычно включают один палец и один или два сустава, то рецептивные поля 1 и 2 включают несколько пальцев, в соответствии с конвергенцией от нескольких регионов 3а и 3б. Таким образом, последовательность обработки информации в соматосенсорной коре заключается в организованном распространении возбуждения от многих нейронов, реагирующих на элементарные признаки стимула, к меньшему количеству нейронов, которые интегрируют все элементарные признаки в комплекс.

От каждого участка кожи информация достаётся не отдельному нейрону соматосенсорной коры, а популяции клеток, в рецептивные поля которых входит этот участок. Одни нейроны реагируют на прикосновение, другие на постоянное давление, третьи – на движение по коже и т. д. Клетки, специализирующиеся на обработке информации от определённых рецепторов объединяются в кортикальные колонки. Исследовавший этот вопрос в 50-х годах ХХ столетия Вернон Маунткастл (Mountcastle W.) сначала безуспешно пытался найти взаимосвязь между разными типами рецепторов и нейронами какого-либо из шести слоёв коры. После ему удалось установить, что функциональные объединения кортикальных нейронов происходят не по горизонтали, т. е. в пределах одного слоя, а по вертикали, через все шесть слоёв коры: такое объединение было названо колонкой.

Диаметр кортикальных колонок составляет приблизительно 0,2 – 0,5 мм, её нейроны возбуждаются преимущественно от рецепторов одного типа. Этому способствует анатомическая организация окончаний нейронов таламуса, доставляющих информацию в колонку. Ветви аксонов таламических нейронов заканчиваются в основном в пределах одной колонки. Такая организация колонки позволяет считать её элементарной функциональной единицей. Колоночная организация обнаруживается не только в соматосенсорной коре, она характерна для коры в целом – это основополагающий принцип её организации.

Кроме первичной соматосенсорной коры S 1 существует вторичная соматосенсорная кора или S 2, которая находится на верхней стенке латеральной (сильвиевой) борозды, разделяющей теменную и височную доли. Большую часть входов во вторичную сенсорную кору образуют клетки областей S 1 от обоих полушарий, а поэтому в областях S 2 представлены обе половины тела. Выходы из первичной сенсорной коры, а также из вторичной – S 2, направлены к прилежащим регионам теменной коры – это ассоциативные области, которые интегрируют все сенсорные функции. Кроме того, от поля 2 существует выход к первичной моторной коре, он имеет большое значение для осуществления точных движений.

Информация к зрительной коре поступает от сетчатки глаз, где в ответ на действие квантов света возникают гиперполяризующие рецепторные потенциалы её фоторецепторных клеток – палочек и колбочек, которые при посредстве биполярных клеток возбуждают ганглиозные. Длинные аксоны ганглиозных клеток образуют зрительные нервы. У каждой ганглиозной клетки есть своё округлое рецептивное поле, состоящее из двух антагонистических зон: центральной и периферической. Одна из них возбуждается при попадании на фоторецепторы света (on-клетки), другая – при затемнении (off-клетки) – таким образом каждое рецептивное поле воспринимает контраст между освещённым и затемнённым участками зрительного поля (Рис. 9.4). Примерно в половине рецептивных полей on-клетки расположены в центре, а off-клетки – на периферии, в другой половине рецептивных полей эти зоны меняются местами. При участии тормозных клеток, осуществляющих латеральное торможение, сетчатка выделяет такие признаки попавшего в поле зрения объекта, как форма, цвет и характер движения. Эти субмодальности перерабатываются параллельно.

Идущие от сетчатки зрительные нервы частично перекрещиваются и передают информацию латеральному коленчатому телу, являющемуся составной частью таламуса; при этом переключении сохраняется принцип ретинотопической организации. Отсюда информация передаётся к первичной зрительной коре, причём сигналы поступают к входным звёздчатым клеткам IV слоя первичной зрительной коры, а от них к расположенным поблизости пирамидныым нейронам, которые называют простыми потому, что они активируются линейными стимулами определённой ориентации, воспринятыми фоторецепторными клетками сетчатки (Рис. 9.5).

Здесь по-прежнему соблюдается ретинотопический принцип, т. е. определённым рецептивным полям сетчатки соответствует общее рецептивное поле, образованное простыми нейронами зрительной коры. Однако это поле имеет не округлую, характерную для сетчатки, а вытянутую в длину форму, в котором находятся как on-, так и off- чувствительные клетки, отвечающие либо на появление света, либо на его исчезновение..

Если рецептивное поле сетчатки равномерно освещается, то простые нейроны коры не активны. Когда же в зрительном рецептивном поле появляется раздражитель в виде светлой полосы на тёмном фоне или тёмной полосы – на светлом, или в виде грани между светлым и тёмным, простые нейроны активируются. Разные рецептивные поля, образованные простыми клетками зрительной коры, различаются способностью реагировать на определённый наклон появившейся в поле зрения полосы. Существует около 20 популяций простых нейронов, отличающихся одна от другой тем, что реагируют на разные углы наклона линейного стимула: одни на вертикальные, другие на горизонтальные, третьи – на наклонённые под разными углами. Каждая популяция различает угол наклона стимула в пределах около 10° – на определённый ("свой") угол наклона она даёт самый сильный ответ.

Если простые нейроны зрительной коры располагаются в IV слое, то клетки другой разновидности – комплексные нейроны облюбовали для себя 2, 3, 5 и 6 слои коры. Некоторые из комплексных нейронов активируются входными звёздчатыми клетками из IV слоя, но большинство из них получают информацию от ближайших простых нейронов, примыкающих к четвёртому слою. У комплексных нейронов одинаковая с их простыми соседями способность давать особенно сильный ответ на линейный стимул с определённым углом наклона. Но их рецептивное поле существенно больше, чем у простых нейронов, поскольку к одному комплексному нейрону конвергируют сразу несколько простых. Кроме того, комплексные нейроны почти не придают значения чётким границам между светлым и тёмным: внутри их большого рецептивного поля on- и off- зоны уже не играют важной роли. Зато многие комплексные клетки специализируются на переработке информации о характере движения стимула: например, одни сильнее активируются, когда объект появляется в поле зрения, другие – когда он из него уходит. В результате совместной деятельности простых и комплексных клеток происходит определение контуров и формы сложного объекта.

Простые и комплексные клетки со сходными свойствами, т. е. предпочитающие определённый угол наклона линейного стимула, объединяются в вертикальные колонки (Рис 9.6).

Каждая колонка, ориентированная на определённый наклон стимула, в своём IV слое имеет концентрические рецептивные поля, а над и под ними однородную популяцию простых нейронов. Простые нейроны передают информацию комплексным клеткам из своей колонки, есть в колонке и тормозные нейроны. Ориентированная на определённый угол наклона стимула колонка имеет диаметр около 30-100 мкм. Соседние с нею колонки ориентированы на другой угол наклона, отличающийся примерно на 10°. Смежные колонки, располагаясь радиально, образуют суперколонку или модуль. Он содержит набор колонок, необходимых для ориентации в пределах 360°, а также размещённые между ними вставки нейронов, специализирующихся на переработке информации о цветовых характеристиках стимула. Такие клетки удаётся обнаружить по высокой концентрации в них митохондриального фермента – цитохромоксидазы; эти клетки отсутствуют в IV слое, а для обозначения их скоплений используют термин blobs – капли.

Больше половины комплексных нейронов ретинотопически организованной зрительной коры реагирует на информацию от обоих глаз, в каждом из которых соответствующие рецептивные поля занимают одинаковое положение. Для таких бинокулярных клетки важно, чтобы один глаз подтвердил то, что увидел другой; они сильнее возбуждается при стимуляции обоих глаз. У большинства бинокулярных клеток обнаружена глазодоминантность: на сигналы от одного глаза они реагируют сильнее, чем от другого. Сигналы от каждого глаза, чередуясь, поступают к клеткам IV слоя независимо друг от друга.

Соседние ориентированные колонки имеют между собой горизонтальные связи. Эти соединения обеспечивают синхронность возбуждения клеток коры, что очень важно для интеграции перерабатываемой информации, соединения данных отдельных рецептивных полей в цельный образ. Однако первичная зрительная кора является только первой ступенью переработки информации, которая продолжается уже за пределами этой области.

Вторичная зрительная кора состоит из многих функционально отличающихся областей: за пределами стриарной коры у обезьян обнаружен 31 регион (у человека, возможно ещё больше), относящийся к переработке зрительной информации. Все эти области коры тесно связаны друг с другом, выявлено свыше 300 соединительных путей между ними, по которым поток информации перемещается преимущественно от выполняющих более простые операции регионов к комплексным, в которых происходит следующий этап интеграции.

Сравнительно недавно с помощью позитронно-эмиссионной томографии было установлено, что вторичная престриатная кора, примыкающая к первичной зрительной, по-видимому, участвует в формировании цветового ощущения и восприятии движущихся объектов. Через неё от первичной зрительной коры идут два главных пути: вентральный и дорсальный (Рис. 9.7).

Вентральный путь проходит к нижней части височной доли, у нейронов которой очень большие рецептивные поля и уже нет ретинотопической организации: здесь происходит опознание зрительного стимула, устанавливается его форма, величина и цвет. Кроме того, около 10% клеток этой области избирательно реагируют на появление в зрительном поле рук и лиц, причём в опознании рук важную роль играет положение пальцев, а при опознании человеческого лица одни нейроны особенно активны, когда оно обращено в фас, а другие – когда оно повёрнуто в профиль. Поражение этих областей может привести к прозопагнозии (от греч. прозоп – лицо; гнозис – знание; а – обозначение отрицания), когда человек перестаёт узнавать знакомые ему лица.

В средней височной извилине, а также в области верхней височной борозды находятся нейроны, необходимые для восприятия движущихся объектов. Эта функция играет очень важную роль в поведении большинства животных, а человек и развитые приматы при участии этой области коры способны фиксировать внимание и на неподвижных объектах. Полученная информация о движении видимых объектов используется также для осуществления произвольных следящих движений глаз и для ориентировки в пространстве при собственном движении.

Дорсальный путь от первичной зрительной коры проходит через дорсальную экстрастриарную кору к задне-теменным областям. Его функциональное значение состоит в определении взаимного расположения всех зрительных стимулов. Повреждения этой области коры сопровождаются промахиванием, когда пациент намерен взять предмет рукой, хотя он видит этот предмет и способен безошибочно описать его форму и цвет. Таким образом, если вентральный путь от зрительной коры приводит к ответу на вопрос "что" представляет собой объект, то дорсальный имеет отношение к вопросу "где" он находится.

9.4. Слуховая кора

Первичная слуховая кора в каждом полушарии расположена в глубине сильвиевой борозды, отделяющей височную долю от лобной и передних отделов теменной доли (поле 41). Она окружена вторичной слуховой корой. К первичной слуховой коре поступает информация от волосковых клеток, находящихся во внутреннем ухе. В зависимости от их расположения в улитке, волосковые клетки обнаруживают избирательную чувствительность к звуковому сигналу определённой частоты в диапазоне от 20 до 16000 Гц, т. е. разные волосковые клетки "настроены" на определённый тон, на определённую высоту звука (кодирование информации по принципу локализации рецепторов).

Информация об интенсивности звукового раздражителя кодируется частотой импульсации от соответствующих этому раздражителю волосковых клеток. Если в звуке содержится несколько частот, то активируется несколько групп рецепторов и афферентных волокон. Слуховой тракт довольно сложен, он включает в себя от пяти до шести нейронов, которые имеют многочисленные возвратные коллатерали и осуществляют передачу сигналов с одной стороны на другую. При переработке сигналов в слуховом тракте сохраняется тонотопическая организация.

Кортикальные колонки слуховой коры тоже организованы тонотопически: образующие их нейроны настроены на один определённый тон. В передних областях слуховой коры находятся колонки, "настроенные" на высокие тоны, а позади них – колонки, получающие информацию о более низких тонах. Параллельно с обработкой информации о высоте тона в соседних колонках этой же области коры перерабатываются сигналы об интенсивности звука и о временных интервалах между отдельными звуками.

Для отдельных нейронов слуховой коры самыми сильными стимулами могут оказаться звуки определённой длительности, повторяющиеся звуки, шумы, т. е. звуковые раздражители с широким диапазоном частот. Нейроны такого рода являются простыми. Наряду с ними существуют комплексные нейроны, стимулами для которых могут быть определённые частотные или амплитудные модуляции звуков, разные частотно-пороговые минимумы. Здесь соблюдается тот же принцип переработки информации, что и в зрительной коре: от регистрации элементарных признаков раздражителя (простые нейроны) – к формированию слухового образа (комплексные нейроны).

Большинство нейронов слуховой коры возбуждается при поступлении сигналов от контрлатерального, т. е. противоположного уха, но есть и такие, что активируются сигналами от ипсилатерального уха, т. е. находящегося на той же стороне. Некоторые нейроны получает информацию от обоих ушей, что имеет особое значение для формирования бинаурального слуха, позволяющего устанавливать положение источника звука в пространстве. В целом же в слуховой коре наблюдается тот же принцип обработки информации, что и в зрительной: простые нейроны служат детекторами определения различных составляющих звукового сигнала, а комплексные нейроны осуществляют их синтез, необходимый для целостного восприятия.

Полное двустороннее повреждение слуховой коры, спрятанной в глубине сильвиевой борозды, у человека бывает очень редко, к тому же при таких повреждениях всегда страдает окружающая ткань. В таких случаях обычно развивается словесная глухота, при которой нарушается способность понимать значение слов. Как ни удивительно, но после двустороннего повреждения слуховой коры у экспериментальных животных не наблюдается дефицит восприятия тонов, однако ухудшается различение одного тона с другим и определение стороны, левой или правой, на которой находится источник звука.

Здесь происходит интеграция разных сенсорных функций, прежде всего соматосенсорной, зрительной и слуховой, эта ассоциативная область особенно связана с когнитивными процессами – мышлением и речью, хотя и то, и другое требует совместной деятельности многих регионов коры, а не одних лишь ассоциативных полей. Ассоциативная кора организована подобно сенсорным проекционным областям: её нейроны объединены в вертикальные колонки.

Задняя часть коры теменных долей (поля 5 и 7) получает информацию от соматосенсорной, зрительной (дорсальный путь) и слуховой коры (Рис. 9.8).

Объединение этой информации даёт возможность ориентироваться в окружающем мире и соотносить его с собственным телом, а также с отдельными частями тела: всё это можно назвать пространственным ощущением. При этом функциональное значение левой и правой заднетеменных областей оказывается не одинаковым, о чём можно судить по последствиям поражения левой или правой половины.

Повреждение доминантной половины, которой у большинства людей является левая, может привести к нарушениям речи и письма, а иногда к утрате способности различать левую и правую стороны, узнавать на ощупь форму предметов. При повреждении недоминантной, в большинстве случаев правой половины, нарушений речи, как правило, нет, но почти утрачивается сенсорная связь с левой половиной тела, хотя там и сохраняется сенсорная чувствительность. Такие больные по существу игнорируют свою левую половину, например, когда одеваются или когда умываются, иногда они могут не признавать собственную левую руку или ногу.

Такое отношение распространяется не только на левую половину тела, но и на левую половину окружающего мира. Хорошо известны автопортреты художника Антона Рёдершайдта, который после перенесённого инсульта в правой задне-теменной области изображал только левую половину своего лица. А вот у французского карикатуриста Сабаделя инсульт повредил левую задне-теменную область и художник потерял речь, а правая его рука оказалась парализованной. Он научился работать левой рукой, восстановил своё мастерство и даже собственный стиль, причём, в отличие от Рёдершайдта правильно передавал перспективу и пространство.

Причина игнорирования левой половины тела у людей с повреждением правой заднетеменной области заключается в утрате сознательного контроля за ней и характерном изменении памяти, когда больной пренебрегает не только реальными предметами слева, но и воспоминаниями об этих предметах. Для формирования ощущения ему необходимо переносить внимание на тот или иной предмет.

Исследования, выполненные с помощью позитронно-эмиссионной томографии показали, что изменения направления внимания у здоровых людей связаны с активацией заднетеменной, а также фронтальной коры. Однако каждая из этих областей решает разные задачи, связанные с распределением внимания. Теменная область активируется, когда происходит только переключение внимания с одних сенсорных сигналов на другие, а приведёт это затем к двигательной активности или нет – не имеет значения. В отличие от этого, лобная кора становится активной только в том случае, если переключение внимания сопровождается связанным с ним движением.

Когда больные с повреждением заднетеменных областей коры одновременно видят два зрительных стимула, из которых один появляется в левом, а другой в правом поле зрения, то они обычно не могут вспомнить стимул, появившийся со стороны, противоположной повреждению. Применение позитронно-эмиссионной томографии при сравнении таких больных со здоровыми людьми позволило выявить разную значимость левого и правого полушария при распределении внимания в пространстве. Оказалось, что правое полушарие может контролировать внимание как в левом, так и в правом поле зрения, тогда как левое полушарие способно это делать только в правом поле зрения. Таким образом, при удержании внимания на объектах, расположенных в правом поле зрения, активны оба полушария, а при переносе его на объекты, представленные в левое поле зрения, сознательный контроль осуществляет одно лишь правое полушарие. В правой заднетеменной области обнаруживаются два отдельных региона контроля, а в левой – только один.

Исследования электрической активности отдельных нейронов заднетеменной коры были проведены на обезьянах. В тот момент, когда в поле зрения появлялся световой сигнал и обезьяна переключала внимание на него, активность некоторых нейронов становилась максимальной и сохранялась такой до тех пор, пока животное интересовалось этим объектом. Если же обезьяна игнорировала сигнал, появившийся в поле её зрения, активность этих нейронов была значительно меньше. Эти и некоторые другие исследования привели к заключению, что именно активность нейронов заднетеменной коры определяет направленность внимания, необходимую для манипуляций с объектом. После того, как обезьяна зафиксирует внимание, чтобы лучше изучить вызвавший её интерес предмет, начинают активироваться нейроны других областей мозга, участвующие в зрительно-моторной координации, например, клетки лобной коры.

9.6. Префронтальная ассоциативная кора

В коре лобных долей различают моторные и ассоциативные области. Передние центральные извилины занимает первичная моторная кора. Непосредственно перед ней, на латеральной поверхности лобных долей, находятся два региона вторичной моторной коры: добавочный моторный ареал и премоторная кора. Вентрально от добавочной коры, в поясной извилине, обнаружены ещё две области вторичной моторной коры. Вторичная моторная кора большую часть афферентных сигналов получает от ассоциативной коры, а свои сигналы передаёт преимущественно моторной коре.

Всю остальную поверхность лобных долей занимает ассоциативная кора., которая подразделяется на два больших региона: префронтальную и орбитофронтальную кору. Префронтальная кора располагается дорсолатерально, а орбитофронтальная занимает медиальные и вентральные отделы лобных долей и относится к лимбической ассоциативной коре. Основная функция префронтальной коры состоит в формировании плана для выполнения комплексов моторных действий.

Большую часть информации, необходимой для произвольной деятельности, префронтальная область получает от заднетеменной ассоциативной коры. После того, как в заднетеменных областях коры произойдёт объединение сенсорной информации разных видов, в первую очередь, соматосенсорной со зрительной и слуховой начинается активация префронтальной коры, которая связана с заднетеменными областями многочисленными внутрикортикальными и субкортикальными связями, например, через таламус. Благодаря этому префронтальная кора получает полную пространственную карту находящихся в поле зрения предметов. Сведения о внешнем пространстве здесь объединяются с информацией о положении тела и отдельных его частей, причём префронтальная кора включает все эти данные в кратковременную рабочую память. На этой основе создаётся план предстоящих действий, т. е. из множества возможных вариантов деятельности выбираются необходимые и в наиболее рациональной последовательности. Прежде всего программируется положение глаз, направляемых на нужный предмет, предусматривается координация действий обеих рук и т. д. Большая часть выходящих из префронтальной коры сигналов поступает в премоторную область коры.

Префронтальная область коры отличается изобилием заканчивающихся в ней дофаминэргических окончаний. Дофамин здесь выполняет, по-видимому, роль модулятора, необходимого для сохранения кратковременной рабочей памяти. После локальной инъекции в префронтальную область вещества, избирательно нарушающего дофаминэргическую передачу, ухудшается выбор правильных действий, которые должна совершать обезьяна, чтобы добраться до корма.

С нарушениями в дофаминэргической системе связывают развитие шизофрении: у большинства шизофреников величина лобных долей меньше, чем у здоровых людей. При решении задач, связанных, например, с сортировкой игральных карт по предложенной инструкции, у нормальных людей увеличивается кровоток в лобных областях, что указывает на повышенную активность нейронов. При шизофрении кровоток в области лобных долей тоже увеличивается, но значительно меньше, чем у здоровых людей. Больные начинают сортировку точно по инструкции, но скоро перестают ею руководствоваться, хотя без труда способны повторить инструкцию. Если предложить им нажимать правой рукой кнопку при включении лампочки одного цвета, а левой- при включении другого, то, несколько раз правильно выполнив инструкцию, они сбиваются и либо нажимают только одну кнопку в ответ на разные сигналы, либо нажимают разные кнопки в произвольном порядке. Примечательно, что и здесь они не забывают инструкцию и в любое время могут её повторить. Это говорит о том, что к ухудшению деятельности приводит не расстройство долговременной памяти, а нарушение взаимодействия между теменно-височно-затылочной и префронтальной областями.

К лимбической коре относят медиальные и вентральные поверхности лобных долей (поскольку они примыкают к глазницам, их ещё называют орбитальной или орбито-фронтальной корой), часть медиальной поверхности затылочных долей, поясные извилины в глубине межполушарной щели, а также переднюю поверхность височных долей. Лимбическая кора взаимодействует с лимбической системой мозга (Рис. 9.9), которая состоит из ряда связанных друг с другом структур, расположенных по средней линии вокруг таламуса наподобие его каймы (limbus – кайма, край).

В лимбическую систему включают миндалины – группу ядер в передней части височных долей. Позади них, в средней части височных долей расположен гиппокамп, примыкающий к нижней части таламуса. К гиппокампу присоединяется свод – большое скопление волокон, представляющее собой важнейший путь лимбической системы: он направляется вдоль дорсальной поверхности таламуса вперёд, к мамиллярным телам и перегородке. Несколько пучков нервных волокон связывают перегородку и мамиллярные тела с миндалинами и гиппокампом и придают лимбической системе форму круга, что впервые заметил в 1937 году Джеймс Папец (Papez J. W.). На внутренней поверхности полушарий есть две извилины, которые относят обычно к лимбической системе: поясная и парагиппокампальная, первая из них опоясывает таламус с дорсальной стороны, а вторая – с вентральной.

Лимбическая кора получает информацию от вторичных сенсорных областей и играет очень важную роль в формировании мотиваций и эмоций и образовании долговременной памяти. Орбито-фронтальная кора, являющаяся частью лимбической ассоциативной коры, имеет прямые связи с миндалинами; с другой стороны, она влияет на создание плана будущих действий. Эти связи в значительной мере определяют эмоциональные аспекты поведения. При поражении лобных долей нарушается формирование мотиваций и затрудняется прогнозирование результатов действий, такие больные отличаются вспыльчивостью, грубы в общении с другими людьми и, вместе с тем, легкомысленны.

9.8. Височная кора

Как было уже сказано, здесь находятся первичная и вторичная слуховые области. Когда Пенфилд стимулировал первичную слуховую кору при проведении нейрохирургических операций у пациентов возникали элементарные акустические ощущения. Раздражение вторичных слуховых областей, находящихся в верхней височной области, сопровождалось ощущением шорохов или шумов, причём многие пациенты связывали их с пережитыми прежде, когда-то услышанными звуками. Нижние области височных долей необходимы для обработки зрительной информации, а их повреждения, как показано в экспериментах на обезьянах, затрудняют требующий обращения к памяти процесс научения при решении некоторых задач. Таким образом, переработка информации в височной коре связана с использованием памяти о прошлом опыте.

После удаления некоторых областей височной коры и гиппокампа (с целью устранения эпилепсии) у пациентов появлялись нарушения определённых видов долговременной памяти. Ухудшение памяти оказывалось более глубоким, если хирургическое вмешательство было двусторонним. При повреждении только левой височной области больные хуже, чем до операции, могли вспомнить предъявленный им список существительных, а при повреждении правой височной области вербальная память почти не изменялась, но хуже запоминались образцы рисунков, геометрических фигур, человеческих лиц. С той поры принято считать, что височная кора имеет отношение к формированию памяти.

С помощью двух отводящих электродов, лежащих на поверхности коры больших полушарий, можно зарегистрировать биопотенциалы, возникающие с частотой от 1 до 50 Гц. Наблюдать за изменениями биоэлектрической активности удаётся и посредством монополярной регистрации, когда активный электрод располагается на поверхности коры, а электрод сравнения – на некотором расстоянии от него, например, на мочке уха. Полученная при таких условиях отведения запись называется электрокортикограммой.

Колебания биопотенциалов, связанные с изменяющейся активностью корковых нейронов, можно регистрировать с помощью электродов, прикреплённых к коже головы. Полученную таким путём запись называют электроэнцефалограммой (ЭЭГ). В повседневной практике электроды на голове размещаются по стандартным схемам, позволяющим судить об изменениях биоэлектрической активности как между каждой парой таких электродов (биполярное отведение), так и в отдельных точках (монополярные отведения). В последнем случае индифферентный электрод прикрепляют к мочке уха или сосцевидному отростку, где электрические процессы так незначительны, что их можно принять за нуль.

Электроэнцефалограмма отражает изменения активности нейронов коры, её картина зависит от расположения электродов и уровня бодрствования. У активно бодрствующего человека на ЭЭГ преобладает т. н. b-ритм, который характеризуется низкой амплитудой регистрируемых потенциалов при сравнительно высокой частоте волн – от 13 до 26 Гц. Во время расслабленного бодрствования, когда человек лежит с закрытыми глазами, b-ритм начинает чередоваться с a-ритмом, отличающимся большей амплитудой и меньшей частотой (8-12 Гц). Такое изменение называют синхронизацией ритма, она обусловлена ритмическим действием на кору некоторых ядер таламуса.

Если подействует стимул, вызывающий ориентировочную реакцию, и человек откроет глаза, то на ЭЭГ a-ритм тотчас же сменяется b-ритмом: этот феномен получил название блокады a-ритма (Рис. 9.10). Таким образом, электроэнцефалограмма позволяет наблюдать не только за спонтанной электрической активностью коры, но и за нейронными процессами, связанными с различными видами деятельности.

Резюме

В коре мозга содержится значительно больше нейронов по сравнению с другими регионами мозга. В большей части коры нейроны сгруппированы так, что можно выделить шесть чередующихся слоёв. Поступающая в кору от таламуса афферентная информация передаётся преимущественно входным нейронам IV слоя, а выходные нейроны содержатся главным образом в VI слое. Входы в кору организованы так, что переработку сходных сигналов осуществляет популяция нейронов, расположенных во всех шести слоях и образующих вертикальную колонку, а однородные колонки объединяются в модуль. Важнейший принцип переработки информации в коре состоит в том, что клетки, выполняющие элементарные функции, передают сигналы комплексным нейронам, а от разных типов комплексных нейронов сведения собираются в определённых регионах ассоциативной коры. Три ассоциативных области коры участвуют в различных когнитивных функциях, таких, как формирование ощущений, образование эмоций, планирование осознанных действий, возникновение долговременной памяти, генерация речи. Хотя каждая из ассоциативных областей специализируется на определённых задачах, все они участвуют в большинстве когнитивных функций, поскольку для такой деятельности необходима интегративная активность разных регионов мозга.

Вопросы для самоконтроля

130. Аксоны каких клеток образуют зрительный нерв?

А. Фоторецепторных; Б. Биполярных; В. Ганглиозных; Г. Нейронов таламуса; Д. Нейронов латерального коленчатого тела.

131. Какой зрительный стимул приводит к активации рецептивных полей простых нейронов первичной зрительной коры?

А. Равномерное освещение поля; Б. Равномерное затемнение поля; В. Движение стимула; Г. Цвет объекта; Д. Грань между светлым и тёмным.

132. В каком слое первичной зрительной коры сосредоточены простые нейроны?

А. II; Б. III; В. IV; Г. V; Д. VI.

133. В какую область коры направлен вентральный путь, начинающийся в первичной зрительной коре?

А. Префронтальная кора; Б. Лимбическая кора; В. Заднетеменная кора; Г. Нижневисочная область; Д. Соматосенсорная кора.

134. Связь каких областей коры особенно важна при определении места нахождения объекта в поле зрения?

А. Зрительная – соматосенсорная; Б. Зрительная – префронтальная; В. Зрительная – нижневисочная; Г. Зрительная – средневисочная; Д. Зрительная – заднетеменная.

135. В каком поле расположена первичная слуховая кора?

А. 5; Б. 7; В. 17; Г. 39; Д. 41.

136. После повреждения какой области коры может развиться синдром игнорирования половины тела?

А. Левая соматосенсорная область; Б. Правая соматосенсорная область; В. Правая заднетеменная кора; Г. Левая префронтальная область; Д. Правая моторная область.

137. Активация какой области коры требуется для того, чтобы перенести внимание с одного объекта на другой?

А. Первичная зрительная кора; Б. Вторичная зрительная кора; В. Нижневисочная область; Г. Средневисочная область; Д. Заднетеменная область.

138. Что из указанного ниже не относится к лобным долям мозга?

А. Соматосенсорная кора; Б. Премоторная кора; В. Добавочный моторный ареал; Г. Орбитофронтальная кора; Д. Первичная моторная кора.

139. При взаимодействии каких двух областей происходит создание плана предстоящих действий?

А. Первичная зрительная кора – экстрастриарные области коры; Б. Первичная зрительная кора – заднетеменная область; В. Вторичная моторная кора – первичная моторная кора; Г. Соматосенсорная кора – первичная моторная кора; Д. Заднетеменная область – префронтальная кора.

140. После локальной инъекции некоторых веществ в префронтальную область коры произошло нарушение последовательности действий, позволяющих обезьяне добираться до корма. В системе какого нейромедиатора эти вещества нарушают передачу сигналов?

А. Глутамат; Б. ГАМК; В. Адреналин; Г. Дофамин; Д. Ацетилхолин.

141. При повреждении какой области коры нарушается кратковременная рабочая память, необходимая для совершения определённой последовательности действий?

А. Префронтальная; Б. Орбитофронтальная; В. Первичная моторная кора; Г. Соматосенсорная кора; Д. Височная.

142. Что из указанного ниже не относится к лимбической коре?

А. Дорсальная поверхность лобных долей; Б. Медиальная поверхность лобных долей; В. Вентральная поверхность лобных долей; Г. Передняя поверхность височных долей; Д. Поясные извилины.

143. Что из перечисленного не принадлежит к лимбической системе?

А. Миндалины; Б. Гиппокамп; В. Свод; Г. Мозолистое тело; Д. Перегородка;

144. Какая из указанных функций нарушается при поражении лобных долей?

А. Долговременная память; Б. Прогнозирование результатов действий; В. Внимание; Г. Узнавание человеческих лиц; Д. Понимание значения слов.

© 2024 lifestoryclub.ru - Клуб семейных историй